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The White Rabbit put on his spectacles. "Where shall I begin, please your
Majesty?" he asked. "Begin at the beginning," the King said gravely, "and
go on till you come to the end: then stop."

Lewis Carroll, Alice in Wonderland

This is a sequel to our article "Predicative foundations of arithmetic" (Feferman
and Hellman, 1995), referred to in the following as PFA; here we review and
clarify what was accomplished in PFA, present some improvements and exten-
sions, and respond to several challenges. The classic challenge to a program of
the sort exemplified by PFA was issued by Charles Parsons in a 1983 paper,
subsequently revised and expanded as Parsons (1992). Another critique is due to
Daniel Isaacson (1987). Most recently, Alexander George and Daniel Velleman
(1996) have examined PFA closely in the context of a general discussion of
different philosophical approaches to the foundations of arithmetic.

The plan of the present paper is as follows: Section I reviews the notions and
results of PFA, in a bit less formal terms than there and without the supporting
proofs, and presents an improvement communicated to us by Peter Aczel. Then,
Section II elaborates on the structuralist perspective that guided PFA. It is in
Section III that we take up the challenge of Parsons. Finally, Section IV deals
with the challenges of George and Velleman, and thereby, that of Isaacson
as well. The paper concludes with an Appendix by Geoffrey Hellman, which
verifies the predicativity, in the sense of PFA, of a suggestion credited to Michael
Dummett for another definition of the natural number concept.

I. Review

In essence, what PFA accomplished was to provide a formal context based on
the notions of finite set and predicative class and on prima facie evident prin-
ciples for such, in which could be established the existence and categoricity of

"This paper was written while the first author was a Fellow at the Center for Advanced Study in the
Behavioral Sciences (Stanford, CA) whose facilities and support, under grants from the Andrew
W. Mellon Foundation and the National Science Foundation, have been greatly appreciated.



318 SOLOMON FEFERMAN AND GEOFFREY HELLMAN

a natural number structure. The following reviews, in looser formal terms than
PFA, the notions and results therein prior to any discussion of their philosoph-
ical significance. Three formal systems were introduced in PFA, denoted EFS,
EFSC, and EFSC*. All are formulated within classical logic. The language
L(EFS), has two kinds of variables:

Individual variables: a, b, c, u, v, w, x, v, z, - . •, and
Finite set variables: A, B, C, F, G, / / , . . .

The intended interpretation is that the latter range over finite sets of individuals.
There is one binary operation symbol (,) for a pairing function on individuals,
and individual terms s, t,... are generated from the individual variables by
means of this operation. We have two relation symbols, ' = ' and ' e \ by means
of which atomic formulas of the form s = t and s e A are obtained. Formulas
(p,is, . . . are generated from these by the propositional operations '->', '&',
V , ' ->' , and by the quantifiers 'V and '3 ' applied to either kind of variable.
The language L(EFSC), which is the same as that of EFSC*, adds a third kind
of variable:

Class variables: X, Y, Z , . . . l

In this extended language, we also have a membership relation between indi-
viduals and classes, giving further atomic formulas of the form s e X. Then
formulas in L(EFSC) are generated as before, allowing, in addition, quantifi-
cation over classes. A formula of this extended language is said to be weak
second-order if it contains no bound class variables. The intended range of
the class variables is the collection of weak second-order definable classes of
individuals. We could consider finite sets to be among the classes, but did not
make that identification in PFA. Instead, we write A = X if A and X have the
same extension. Similarly, we explain when a class is a subclass of a set, and
so on. A class X is said to be finite and we write Fin(X) if 3A(A = X).

The Axioms of EFS are denoted (Sep), (FS-I), (FS-II), (P-I), and (P-II), and
are explained as follows: The separation scheme (Sep) asserts that any definable
subset of a finite set is finite; that is, for each formula cp of EFS, {x e A | cp(x)} is
a finite set B when A is a given finite set. The axiom (FS-I) asserts the existence
of an empty (finite) set, and (FS-II) tells us that if A is a finite set and a is
any individual then A U {a} is a finite set. The pairing axioms (P-I) and (P-II),
respectively, say that pairing is one-one and that there is an urelement under
pairing; it is convenient to introduce the symbol 0 for an individual that is not
a pair.

The Axioms of EFSC augment those of EFS by the scheme (WS-CA) for
weak second-order comprehension axiom, which tells us that {x | (p(x)} is a
class X for any weak second-order <p. In this language, we allow the formula q>
in (Sep) to contain free class variables; then it can be replaced by the assertion
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that any subclass of a finite set is finite. The following theorem (numbered 1 in
PFA) is easily proved by a model-theoretic argument, but can also be given a
finitary proof-theoretic argument.

Metatheorem. EFSC is a conservative extension of EFS.

In the language of EFSC, (binary) relations are identified with classes of ordered
pairs, and functions, for which we use the letters f, g , . . . ,2 are identified with
many-one relations; n-ary functions reduce to unary functions of rc-tuples. Then
we can formulate the notion of Dedekind finite class as being an X such that
there is no one-one map from X to a proper subclass of X. By the axiom (Card)
is meant the statement that every (truly) finite class is Dedekind finite. The
Axioms of EFSC* are then the same as those of EFSC, with the additional
axiom (Card).

Now, working in EFSC, we defined a triple (M, a, g) to be &pre-N-structure
if it satisfies the following two conditions:

(N-I) VJC e M[g(*) # a], and
(N-II) VJC, y e M[g(jc) = g(v) -> x = y].

These are the usual first two Peano axioms when a is 0 and g is the successor
operation. By an N-structure is meant a pre-N-structure that satisfies the axiom
of induction in the form

(N-III) V X c M [ f l G X & VJC(JC e X -» g(jc) €  X) -> X = M].

It is proved in EFSC that we can define functions by primitive recursion on any
Af-structure; the idea is simply to obtain such as the union of finite approxima-
tions. This union is thus definable in a weak second-order way. From that, we
readily obtain the following theorem (numbered 5 in PFA):

Theorem. (Categoricity, in EFSC). Any two TV-structures are isomorphic.

Now, to obtain the existence of N-structures, in PFA we began with a specific
pre-Af-structure (V, 0, s), where V = {x | x = x] and s(x) = x' = (x, 0); that
this satisfies (N-I) and (N-II) is readily seen from the axioms (P-II) and (P-I),
respectively. Next, define

Clos-(A) ±> VJC[JC' e A -> x e A], (1)

and

y < x «> VA[x e A & Clos-(A) -+y e A], (2)

In words, Clos~(A) is read as saying that A is closed under the predecessor
operation (when applicable), and so, y < x holds if y belongs to every finite
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set that contains x and is closed under the predecessor operation. Let

= {y\y<x}. (3)

The next step in PFA was to cut down the structure (V, 0, s) to a special pre-
Af-structure:

M = {JC | Fin(PdU)) & Vy[y < x -> y = 0 v 3z(y = z')]}. (4)

This led to the following theorem (numbered 8 in PFA):

Theorem. (Existence, in EFSC*). (M, 0, s) is an Af-structure.

To summarize: In PFA, categoricity of Af-structures was established in EFSC
and existence in EFSC*. Following publication of this work, we learned from
Peter Aczel of a simple improvement of the latter result obtained by taking in
place of M the following class:

N = {x | Fin(Pd(;c)) & 0 < x}. (5)

Theorem. (Aczel). EFSC proves that (N, 0, s) is an TV-structure.

We provide the proof of this here, using facts established in Theorem 2 of PFA.

(i) 0 e N, because Pd(0) = {0} and 0 < 0.
(ii) x e N -> x' e N, because Pd(jc') = Pd(x) U {*'}, and 0 < x -> 0 < x'.

(iii) If X is any subclass of N and 0 €  X A Vy[y e X -> / e X], then
X = N. For, suppose that there is some x e N with x £ X. Let A =
{y \y S x & y £ X}; A is finite since it is a subclass of the finite set
Pd(jc). Moreover, A is closed under the predecessor operation, and so,
A contains every y < JC; in particular, 0 e A, which contradicts 0 e X.

The theorem follows from (i)-(iii), since the axioms (N-I) and (N-II) hold on
V and hence on N.

It was proved in PFA that EFSC* is of the same (proof-theoretic) strength
as the system PA of Peano axioms and is a conservative extension of the latter
under a suitable interpretation. The argument was that EFSC* is interpretable in
the system ACAo, which is a well-known second-order conservative extension
of PA based on the arithmetical comprehension axiom scheme together with
induction axiom in the form (N-III). Conversely, we can develop PA in EFSC*
using closure under primitive recursion on any Af-structure. Since any first-
order formula of arithmetic so interpreted then defines a class, we obtain the
full induction scheme for PA in EFSC*. Now, using the preceding result, the
whole argument applies mutatis mutandis to obtain the following:
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Metatheorem. (Aczel). EFSC is of the same (proof-theoretic)strength as PA
and is a conservative extension of PA under the interpretation of the latter in
EFSC.

This result also served to answer Question 1 on p. 13 of PFA.
Incidentally, it may be seen that the definition of N in (5) above is equivalent

to the following:

JCGNOVA[;C G A & C1OS~(A) -> 0 e A] & 3A[x e A & Clos~(A)]. (6)

For, the first conjunct here is equivalent to the statement that 0 < x, and the
second to Fin(Pd(;t)). In this form, Aczel's definition is simply the same as the
one proposed by George (1987, p. 515).3 Part of the progress that is achieved
by this work in our framework is to bring out clearly the assumptions about
finite sets that are needed for it and that are prima-facie evident for that notion.

There is one further improvement in our work to mention. It emerged from
correspondence with Alexander George and Daniel Velleman that the remark in
footnote 5 on p. 16 of PFA asserting a relationship of our work with a definition
of the natural numbers credited to Dummett was obscure. The exact situation has
now been clarified by Geoffrey Hellman in the Appendix to this paper, where
it is shown that Dummet's definition also yields an Af-structure, provably in
EFSC.

II. The Structuralist Standpoint and "Constructing
the Natural Numbers"

In developing predicative foundations of arithmetic, we have been proceeding
from a structuralist standpoint, one that each of us has pursued independently in
other contexts. In general terms, structuralism has been described by one of us
as the view that "mathematics is the free exploration of structural possibilities,
pursued by (more or less) rigorous deductive means" (Hellman 1989, p. 6),
along with the claim that,

In mathematics, it is not particular objects which matter but rather certain 'structural'
properties and relations, both within and among relevant totalities. (Hellman 1996,
p. 101)

Such general formulations raise questions of scope, for it seems that there must
be exceptional mathematical concepts requiring a nonstructural or prestruc-
tural understanding so that prior sense can be made of "items in a structure,"
substructure, and other concepts required for structuralism to get started.4 For
present purposes, however, this question need not be taken up in a general way,
as we may work within a more specialized form of structuralism, one explicitly
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concerned with number systems. As the other of us has put it:

The first task of any general foundational scheme for mathematics is to establish the
number systems. In both the extensional and intensional approach this is done from
the modern structuralist point of view. The structuralist viewpoint as regards the basic
number systems is that it is not the specific nature of the individual objects which is of
the essence, but rather the isomorphism type of the structure of which they form a part.
Each structure A is to be characterized up to isomorphism by a structural property P
which, logically, may be of first order or of higher order. (Feferman 1985, p. 48)

So long as this is understood, we may work with a system such as EFSC,
leaving open whether this itself is to be embedded in a more general structuralist
framework or whether it is thought of as standing on its own.

The central point here is that what we are seeking to define in a predicatively
acceptable way is not, strictly speaking, the predicate 'natural number' sim-
pliciter, but rather the predicate 'natural-number-type structure'. That is, we
seek to characterize what it is to be a structure of this particular type - what
Dedekind (1888) called "simply infinite systems" and what set-theorists call
"co-sequences" - and also to prove that, mathematically, such structures exist.
Once this has been accomplished, we may then, as afagon de parler, identify
the elements of a particular such structure as "the natural numbers," employing
standard numerals and designations of functions and relations, but this is es-
sentially for mathematical convenience. Officially, we eliminate the predicate
'is a natural number' in its absolute sense and speak instead of what holds in
any natural-number-type structure. And thanks to our (limited) second-order
logical machinery, we can render arithmetical statements directly, relativized
to structures, as illustrated by the conditions (N-I)-(N-III) (Sec. 1, above);
there is no need to introduce a relation of satisfaction between structures and
sentences.

This standpoint has some implications worth noting. First, since no absolute
meaning is being assigned to 'natural number', the same goes for 'nonnum-
ber'. While of course a good definition of 'natural-number-type structure' must
rule out anything that does not qualify as such a structure, there is simply no
problem of "excluding nonnumbers" such as Julius Caesar (on standard pla-
tonist conceptions). This notorious Fregean problem simply does not arise in
the structuralist setting. Rather than having to answer the question, "Is Julius
Caesar a number?" (and presumably get the right answer), we sidestep it en-
tirely. We even regard it as misleading to ask, "Might Julius Caesar be or have
been a number?" for this still employs 'number' in an absolute sense. Of course,
Julius Caesar might have been - and presumably is, in a mathematical sense -
a member of many natural-number-type structures. On the other hand, we can
make sense of standard, mathematically sensible statements such as "3/5 is
not a natural number" by writing out "In any structure for the rationals with a
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substructure for the natural numbers (identified in the usual way), the object
denoted '3/5' does not belong to the domain of the latter." And, of course, many
elliptical references to "the natural numbers" are harmless.

More significantly, the whole question of circularity in "constructions of the
natural numbers" must be looked at afresh. In contrast to 'natural number',
'natural-number-type structure' is an infinitistic concept in the straightforward
sense that any instance of such a structure has an infinite domain with (at least)
a successor-type operation defined on it. While it might well appear circular to
define 'natural number' in terms of a predicate applying to just finite objects -
for example, finite sets or sequences from some chosen domain - since it might
seem obvious that such objects can do the duty of natural numbers, nevertheless
if one succeeds in building up an infinite structure of just the right sort from
finite objects, using acceptable methods of construction, and then proves by
acceptable means that one has succeeded, prima facie one has done as much as
could reasonably be demanded.

In predicative foundations, it is quite natural to take the notion 'finite set' as
given, governed by elementary closure conditions as in EFSC. The cogency of
this can be seen as follows: Within the definitionist framework, a predicatively
acceptable domain is one in which each item is specified by a designator, say in
a mathematical language. Hence any finite subset of the domain is specificable
outright by a disjunction of the form x = d\ Vx = d2v • • • v * = <4, where each
dt is a designator of an object in the domain. Thus, the finite sets correspond
to finite lists of designators, and it is reasonable for the definitionist to take
this notion - "finite list of quasi-concrete objects" - as understood. The claim
is, along Hilbertian lines, that this does not depend on a grasp of the infinite
structure of natural numbers, nor does it depend on an explicit understanding
of the even more complex infinite structure of finite subsets ordered, say, by
inclusion. Once given such a starting point, the closure conditions of EFSC are
then evident.

There is a further related point of comparison between the concepts 'finite
set' and 'natural number' that is relevant to our project. Given an infinite domain
X of objects, we think of a finite set A of Xs as fully determined by its members.
Although certain relations to other finite sets of Xs are also evident for us -
for example, adjoining any new element to A yields a finite set - the identity
of A as a finite set is not conceived as depending on its position in an infinite
structure of finite sets of Xs. Yet this "self-standing" character of finite sets is
not shared by natural numbers, even on platonist views. To identify a natural
number is to identify its position in an infinite structure. Even on a set-theoretic
construction, while the sets taken as numbers are of course determined as sets
by their members, they are not determined as numbers until their position in a
sequence is determined. Such considerations lead naturally to the structuralist
project of PFA.
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The significance of these points has perhaps not been sufficiently appreciated
because, historically, structuralism has not been articulated independently of
platonism. If one succeeds in defining 'natural number' platonistically, say as
Frege or Russell did, or as Zermelo or von Neumann did, so that the natural
numbers are identified uniquely with particular abstract objects, then, since
the whole sequence of natural numbers thus defined together with arithmetic
functions and relations are unproblematic as objects in such frameworks, it is
a trivial matter to pass to an explicit definition of 'natural-number-type struc-
ture': one simply specifies as such a structure any that is isomorphic to the
original, privileged one. Then, clearly all the work has gone into the original
definition of 'natural number', and questions of circularity are directed there.
However, the approach of PFA is different, sharing more with Hilbert's concep-
tion of mathematical axioms and reference than with Frege's.5 For we bypass
construction of 'the natural numbers' as particular objects and proceed directly
to the infinitistic concept, 'natural-number-type structure' (much as Dedekind
[1888] proceeded directly to define 'simply infinite system'). Then, in proving
the existence of such structures, we introduce a certain sequence of finite objects
available within our framework. Collecting these is predicatively unproblem-
atic, for they are specified as having finitely many earlier elements (including an
initial one), not as fulfilling mathematical induction. That they satisfy induction
is then proved as a theorem.6

Despite this result and the related ones established in PFA - especially the
categoricity of our characterization and the proof-theoretic conservativeness
of our system over PA - questions have been raised, implicitly and explicitly,
concerning circularity and possible hidden impredicativity in the constructions.
In the remaining two sections, we will address these specifically.

III. Parsons' Challenge

In his stimulating paper "The Impredicativity of Induction" (I of I in the follow-
ing), Charles Parsons takes up a number of issues in his typically thoughtful and
thorough manner. Our main purpose here is to address the points most directly
related as a challenge to what PFA was intended to accomplish, namely, a pred-
icative foundation of the structure of natural numbers, given the notion of finite
set of individuals.7 But it is necessary, first, to make some distinctions in regard
to the idea of predicativity. To begin, a putative definition of an object c is said
to be impredicative if it makes use of bound variables whose range includes
c as one of its possible values.8 Such bound variables may appear attached to
quantifiers, or as the variable of abstraction in definitions of sets or functions,
or as the variable in a unique description operator, and so on. We do not agree
with the position ascribed to Poincare and Weyl,9 that impredicative definitions
are prima facie viciously circular and to be avoided. For example, we regard
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the number associated with the Waring problem for cubes - defined as the least
positive integer n such that every sufficiently large integer is a sum of, at most,
n positive cubes - as a perfectly meaningful and noncircular description of a
specific integer; it is known that n < 7, but beyond that, the exact value of
n is not known. While this definition would generally be considered noncon-
structive, and is impredicative according to the general idea given above, from
a classical predicative point of view it is not viciously circular, since we are
convinced by predicative arguments that such a number exists and must have
an alternative predicative definition, be it 7 or a smaller integer. So, for us, the
issue is to determine when there is a predicative warrant for accepting a prima
facie impredicative definition. That cannot be answered without saying what
constitutes a predicative proof of existence of objects of one kind or another.
Moreover, the above explanation of what it is about the form of a putative defi-
nition that makes it impredicative does not tell us what constitutes a predicative
definition, because it only tells us what should not appear in it, and nothing
about what (notions, names, etc.) may appear in it. Since the latter have to be,
in some sense, prior to the object being defined, and since it is not asserted in
explaining what is to be avoided just what that is, an answer to this necessarily
makes of predicativity a relative rather than an absolute notion.

Considerations such as this led Kreisel to propose a formal notion of predica-
tive provability given the natural numbers, and that was characterized in precise
proof-theoretical terms independently (and in agreement with each other) by
Feferman (1964) and Schlitte (1965). Speaking informally, that characterization
takes for granted the notions and laws of classical logic as applied to definitions
and statements involving, to begin with, only the natural numbers as the range
of bound variables in definitions of sets of natural numbers, and then admits,
successively, definitions employing variables for sets ranging over collections
of sets that have been comprehended predicatively.10 The details need not con-
cern us; suffice it to say that Parsons, among others, has found this analysis of
predicativity given the natural numbers to be persuasive (I of I, p. 150). How-
ever, as he suggests in the latter part of I of I, he also finds it reasonable to ascribe
the term 'predicative' to the use of certain generalized inductive definitions that
breach the bounds of the Feferman-Schutte characterization. There is no con-
tradiction here from our point of view; the latter simply shifts what the notion
of predicativity is taken relative to. One might go further and consider a notion
of predicativity relative to the structure of real numbers, if one regarded that
structure as well determined, and so on to higher levels of set theory. Though
the idea is clear enough, none of these has been studied and characterized in
precise proof-theoretical terms.11

Now, finally, we return to the program of PFA. There, the aim is to consider
what can be done predicatively in the foundations of arithmetic relative to the
notion of a finite set of individuals, where the individuals themselves may have
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some structure as built up by ordered pairs.12 Philosophically, the significance
of this is that we have a prior conception of finite set that does not require the
understanding of the natural-number system, and for this notion we have some
evident closure principles, which are simply expressed by the axioms (Sep),
(FS-I), and (FS-II) of PFA. We do not regard the success of the program PFA to
be necessary for the acceptance of the natural-number system, but believe that
its success, if granted, is of philosophical interest.

The challenge raised by Parsons in I of I begins with the evident impredica-
tivity of Frege's definition of the natural numbers, in the form

(Frege-N) Na <+ VP{P0 & Vx(Px -> P(Sx)) -> Pa],

where the variable P is supposed to range over "arbitrary" second-order entities
in some sense or other (Fregean concepts, predicates, propositional functions,
sets, classes, attributes, etc.), including, among others, the entity TV supposedly
being defined. But Parsons enlarges on what constitutes the impredicativity of
Frege's definitions in that he says that, to use it to derive induction in the form
(say) of a rule,

(Ind-Rule)
<p(t)

we must allow instantiation of the variable ' P ' in (Frege-N) by formulas (p(x)
which may contain the predicate ' W \ In this sense, the focus of Parsons'
discussion is on the impredicativity of induction, rather than the prima facie im-
predicativity of the putative definition (Frege-N). He expands the implications
of this still further as follows:

The thesis of the present note is that the impredicativity that arises from Frege's attempt to
reduce induction to a definition is not a mere artifact of Frege's strategy of reduction. As
Michael Dummett observed some years ago, the impredicativity - though not necessarily
impredicative second-order logic - remains if we regard induction in a looser way as
part of the explanation of the term 'natural number'. If one explains the notion of natural
number in such a way that induction falls out of the explanation, then one will be left
with a similar impredicativity. (I of I, p. 141; the reference is to Dummett [1978 p. 199].)

Perhaps what we were up to in PFA is orthogonal to the issue as posed in this
way by Parsons, but let us see what we can do to relate the two. First, as explained
in the preceding section, what we are not after is a definition of the notion of
natural number in the traditional sense in which this is conceived, but rather it
is to establish the existence (and uniqueness, up to isomorphism) of a natural-
number structure, or Af-structure (as it was abbreviated, PFA (i.e., Feferman
and Hellman 1995)). Second, induction in the form of the principle (N-III) of
Section I, above, is taken to be part of what constitutes an Af-structure. We
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agree with Parsons (I of I, p. 145) that "[s]tated as a general principle, induction
is about 'all predicates'," but we do not agree with the conclusion that he draws
(ibid.) that "[i]nduction is thus inherently impredicative, because . . . we cannot
apply it without taking predicates involving quantification over [the domain of
natural numbers] as instances." Rather, our position is that our - or, perhaps
better, Aczel's - proof of the existence (and categoricity) of an Af-structure is
predicative, given the notion of arbitrary finite set of individuals, and thence in
any such structure we may apply induction to any formula that is recognized to
define a class in our framework, including formulas that refer to the particular
definition of our Af-structure. Specifically, within EFSC, these are the weak
second-order formulas, in which only quantification over individuals and finite
sets is permitted. Of course, if we want to apply induction to more general classes
of formulas in our system, or to formulas in more extensive systems, the question
of predicativity has to be re-examined on a case-by-case basis. For example, if
we expand the system EFSC by a principle that says that in any Af-structure we
may apply induction to arbitrary formulas of L(EFSC), the resulting system
EFSC + FI is no longer evidently predicative, given the notion of finite set,
but it is so nonetheless. The reason is that EFSC 4- FI can be interpreted in
the system ACA with full second-order induction - which is predicative given
the natural numbers according to the Feferman-Schutte characterization. And
since, on our analysis, the natural numbers are predicative, given the finite sets,
this also justifies EFSC + FI on that same basis. Naturally, one may expect that
if the language is expanded by introducing terms for impredicatively defined
sets (specified by suitable instances of the comprehension axiom), or if one
adds impredicative higher-type or set-theoretical concepts, then the expanded
instances of induction that become available will take us beyond the predicative,
whether considered relative to the natural numbers or to finite sets.13 But this
cannot be counted as an objection to what is accomplished in PFA. It is not
the general principle of induction that is impredicative, but only various of its
instances; and those instances that Parsons argues to be impredicative, in the
above quotation, are not examples of such, granted the notion of finite set.

Now, finally, and relatedly, we take up the objection that Parsons raises in I
of I, pp. 146-68, to the predicativity of Alexander George's (1987) revision of
Quine's definition of the natural numbers using quantification over finite sets,
which is equivalent to Aczel's definition of an A^-structure as we pointed out in
Section I, above. Of this he says: "To the claim that the Quinean definition of
the natural numbers is predicative, one can also reply that it is so only because
the notion of finite set is assumed." Indeed, as the above discussion affirms, we
could not agree more. But the reason for his objection then is that "[o]nce one
allows oneself the notion of finite set, it seems one should be allowed to use some
basic forms of reasoning concerning finite sets," and in particular (according
to Parsons) of induction and recursion on finite sets, which would then allow
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one to define the natural numbers as the cardinal numbers of finite sets. But
it is just this that we do not assume in EFSC (or EFSC*); no assumptions are
made on finite sets besides the closure principles (Sep), (FS-I), and FS-II) (and
[Card] in the case of EFSC*). Of course, within our system, once we have an
Af-structure, we can formally define what it means to be a finite set by saying
that it is in one-one correspondence with an initial segment of that structure,
and then derive principles of induction and recursion for that notion. But we
cannot prove that these exhaust the range of the finite-set variables.

IV. The Challenge of George and Velleman

In their 1996 paper, "Two conceptions of natural number" (TC in the follow-
ing), Alexander George and Daniel Velleman take up the PFA constructions
in connection with two main conceptions of natural number, which they de-
scribe as "pare down" (PD) and "build up" (BU) corresponding to two ways
of characterizing the minimal closure of a set A under an operation / . On the
PD approach, this is defined explicitly as the intersection of all sets including
A and closed under / . In the case of the natural numbers, this corresponds to
the definitions given by Dedekind, Frege, and Russell, essentially as the inter-
section of all classes containing zero and closed under successor. In contrast,
the BU approach provides an inductive definition, illustrated in the case of the
natural numbers by clauses such as

(1) 0 is a natural number, and
(2) If n is a natural number, then so is S(n),

together with an extremal clause, which says that natural numbers are only those
objects generated by these rules. As their discussion brings out, the PD approach
comports with a platonist view, according to which impredicative definitions
are legitimate means of picking out independently existing sets, whereas the BU
approach comports with a constructivist view that rejects the platonist stance
and impredicative definitions in favor of rules for generating the intended set
of objects. Not surprisingly, neither camp is satisfied with the other's approach,
the constructivist rejecting the PD approach as just indicated, but the platonist
also rejecting the BU approach as failing properly to define the intended class
by failing explicitly to capture the required notion of "finite iteration" of the
rules of construction. Furthermore, neither camp is impressed with the other's
critique. And so the impasse persists.

The question arises for George and Velleman: To which type of defini-
tion should that of PFA be assimilated? As they recognize, it seeks to avoid
impredicativity and so surely should not be thought of as a PD definition.
On the other hand, in PFA, "the completed infinite" is recognized; moreover
(although George and Velleman do not highlight this), an explicit definition
of "natural-number-type structure" is provided, not merely an inductive or



Challenges to Predicative Foundations of Arithmetic 329

recursive description of "natural numbers," and so, assimilation of PFA to the
BU approach is misleading. Here we would suggest that a new, third category of
definition be recognized, one that combines the explicitness demanded by PD
with the predicative methods demanded by BU; it might be called "predicative
structuralist" (PS), if one wants a two-letter label. But before recognizing a
qualitatively new product, we want to be sure that at least the labeling is honest
and accurate.

In notes, George and Velleman raise questions on this score. The essential
worry seems to be that the construction in PFA (or its simplification by Aczel)
succeeds only if the range of the finite-set quantifiers is restricted to truly finite
sets; otherwise, "nonstandard numbers" will not be excluded. But, for some
reason, any effort to impose this restriction must appear circular or involve
some hidden impredicativity. They put it this way:

As Daniel Isaacson (1987) suggests, the predicativist definition will be successful only
if (i) the second-order quantifier in the definition ranges over a domain that includes all
finite initial segments of N and (ii) the domain contains no infinite sets. He concludes
that the definition therefore "does not fare significantly better on the score of avoiding
impredicativity than the one based on full second-order logic" (p. 156). Feferman and
Hellman argue in response (1995, note 5, p. 16) that the existence of the required finite
initial segments can be justified predicatively, but it seems to us that they have failed
to answer part (ii) of Isaacson's objection, namely that infinite sets must be excluded
from the domain of quantification. As we saw earlier, it is this exclusion of infinite sets
from the second-order domain that guarantees that Feferman and Hellman's definition
will capture only natural numbers. In fact, the difficulty here is in effect the same as the
difficulty that the platonist finds with the BU definition; it is not the inclusion of desired
elements in the domain that causes problems, but rather the exclusion of unwanted
elements. (TC, n.9)

Now an adequate response to this requires distinguishing what may be called
"external" and "internal" viewpoints concerning formalization of mathematics.
From an external standpoint, one views a formalization from the outside and
asks whether and how nonstandard models of axioms or defining conditions can
be ruled out. Here the metamathematical facts are clear. So long as one works
with a consistent formal system based on a (possibly many-sorted) first-order
logic, or indeed any logic that is compact, nonstandard models of arithmetic are
inevitable. But this is true even if an impredicative definition of "N-structure"
is given. Even a PD definition in ZFC is subject to this limitation and will have
realizations in which "numbers" with infinitely many predecessors appear. No
extent of analysis of 'finite' or 'standard number', and so on, can overcome
this limitation. What this shows is that the problem of "excluding nonstandard
models" in this sense is "orthogonal," so to speak, to the problem of predicativity.
All formal definitions are in the same boat, and the only recourse, from the
external vantage point, is somehow to transcend the framework of first-order
logic. Let us return to this momentarily.
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Alternatively, one can look at matters from an internal point of view. One
accepts the inevitability of nonstandard models of theories built on formal logic,
but then one attempts to lay down axioms that are intuitively evident of the in-
formal notions one is trying to capture, and then one seeks to prove the strongest
theorems that one can, which, on their ordinary informal interpretation, express
interesting and desirable results. Thus, one can lay down closure conditions,
as in PFA, that are evident of finite sets, and, although they can hold of other
collections as well, the theorems that one proves, such as mathematical induc-
tion in specified pre-TV-structures, establish desired results even if they can be
nonstandardly interpreted. (Bear in mind that every mathematical result about
the continuum, say, recovered in ZFC has nonstandard interpretations.) Indeed,
on this score, a good case can be made that the predicativist can prove results on
the existence and uniqueness of natural-number-type structures that are just as
decisive as those the classicist can prove. Let us return to this after elaborating
a bit further about what can be said on behalf of PFA and the improvements
described in Section I from the external viewpoint.

To effect the desired "exclusion of infinite sets" that can lead to "nonstandard
numbers," that is, elements of Af-structures with infinitely many predecessors,
one takes the bull by the horns, so to speak: the exclusion is imposed by fiat in the
meta-language by stipulating that we are only concerned with interpretations
in which the range of the finite-set quantifiers contains only finite sets. 'Finite'
is taken as absolute. This is the framework of "weak second-order logic" in
its semantical sense. As is well known, it is noncompact and not recursively
axiomatizable, but this is offset by gains in expressive power, exploited in PFA.
For now one can collect items of a pre-N - structure that correspond to genuinely
finite initial segments of a linear ordering, and this suffices to characterize N-
structures.

There is a limited analogy with the classicist's approach via PD definitions,
for example, those of Dedekind, Frege, and Russell, formalized say in second-
order notation; for these characterize Af-structures only if nonstandard, less-
than-full ranges of the second-order quantifiers are excluded (so that second-
order monadic quantifiers must range over all subsets of the domain, precluding
Henkin models). The problem of nonstandard models is overcome by moving
to noncompact, nonaxiomatizable "full second-order logic." But the analogy is
only partial. For, whereas the classical logicist excludes nonfull interpretations
on the basis of a claim to understand "all subsets of an infinite set," the predica-
tive logicist merely excludes infinite sets from the range of finite-set quantifiers
on the basis of a claim to understand 'all finite subsets'. If the objection is
that this is illegitimate because 'finite' "is as much in need of analysis as the
concept 'natural number' " (TC, note 9), then it is appropriate to refer back to
Section II, above, and the whole case for grounding the infinitistic notion of
"natural-number-type structure" on elementary assumptions on finite objects,
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together with the point made earlier (Sec. Ill) that nowhere do we have to invoke
finite-set induction in order to prove any of our theorems, including the theo-
rem that says that mathematical induction holds in any special pre-Af-structure.
(Mutatis mutandis for the Aczel theorem.) Indeed, since induction is essential
to the natural-number concept and to reasoning "about the natural numbers,"
the very fact that finite-set induction is not needed to recover this much counts
in favor of the view that 'finite set' is actually less in need of analysis than
'natural number'.

Moreover, on the question of existence, there is a fundamental disanalogy
between the PD and the PS approaches. For, as George and Velleman bring out,
the impredicative definitions of the logicists still must presuppose existence
of the minimal closure, and this is an additional assumption, not guaranteed
merely by the restriction to full interpretations. There still must be some full
interpretation of the right sort, that is, containing the real minimal closure. In
contrast, the predicative constructions of PFA, Aczel, and the Appendix below
yield the desired classes by a restricted comprehension principle, WS-CA.
Given finite sets as objects, such a principle is justified much as arithmetical
comprehension is; one can even eliminate talk of classes of individuals in favor
of satisfaction of formulas, since these contain only bound individual and finite-
set variables but no bound class variables.

Thus, the predicative logicist accompanies the platonist classicist only a
relatively small step beyond first-order logic; then construction takes over on
the new higher ground, while the platonist continues ascending, eventually into
the clouds.

Consistently with this external view, one can, however, also pursue the in-
ternalist course of proving desirable theorems. Here, perhaps surprisingly, the
predicativist is able to recover predicativist analogues of well-known classical
results. The proofs of categoricity or unicity of Af-structures and of mathemati-
cal induction in the pre-Af-structures of PFA, Aczel, and the Appendix already
illustrate this. But one can go further and prove theorems that, informally under-
stood, say explicitly that A^-structures cannot contain any nonstandard elements.
The idea is to formalize the following, familiar reasoning. Let (M, 0 / ) be an
Af-structure. Induction implies than any non-empty class (subclass of M) closed
downward under predecessor, p(x), contains 0. Consider the class of nonstan-
dard numbers (of M); call it K. If z G K, then also p(z) e K (contraposing
the Adjunction axiom); therefore, if K is non-empty, it contains 0, a blatant
contradiction. (Put positively, 0 is standard and if z is standard, so is z', and so,
all members of M are standard.) Elements with infinitely many predecessors
are ruled out directly by Induction.

But in what system is the above reasoning carried out? If we attempt to
formalize it in EFSC, expressing "x is nonstandard" by "VA(A ^ {y : y < JC},"
we immediately contradict the definition of M! On the other hand, we cannot
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simply plug in "{y : y < x} is Dedekind-infinite" or any other second-order
analysis of "infinite" involving general class or function quantifiers, for then
we would not be able predicatively to form the class K. However, there is
an alternative method that gets around this. For here we may appeal to the
metatheorem mentioned in Section III: If we add to EFSC the axiom schema
known as "full induction" (FI), that is, induction for arbitrary second-order
formulas, the resulting system, EFSC + FI, is interpretable in the subsystem
of PA2 known as ACA. This also contains FI and, moreover, is a predicatively
acceptable system relative to the natural numbers (on the Feferman-Schutte
characterization) as noted in Section III. But, as was also observed there, since
the natural numbers or TV-structures are predicative given the finite sets, EFSC +
FI is also predicatively acceptable relative to the finite sets. Although it cannot
prove the existence of subclasses of an Af-structure defined by formulas with
class quantifiers, it can prove that induction holds directly for any formula that
platonistically defines a subclass, as it were. In particular, now one can formalize
the above induction ruling out nonstandard numbers, using, in place of x e K, a
second-order formula (p(x) to express "JC has infinitely many predecessors," for
example, "the predecessors of x form a class, a subclass of which is in one-one
correspondence with an unbounded subclass of M"; or it could just as well be
"the predecessors of x form a Dedekind-infinite class." The predicativist, as well
as the classicist, regards these as good formalizations of the intended notion.
Thus, the reasoning is formalizable in a predicatively acceptable extension of
EFSC without appealing to the special finite-set variables and without any
circular or impredicative reference to the class K.14

Looking at the contrapositive, one sees that one has thus derived the conse-
quence of the axiom (Card) directly relevant to ruling out nonstandard members
of TV-structures, viz., the statement that the predecessors of any such element
form a Dedekind-finite set,

VJC[JC e M -> Ded Fin(Pd(*))].

This follows straightforwardly by induction on the formula, <p(z), expressing
DedFin(Pd(z)). Again, we need not be able to collect all elements satisfying
this formula in order to reason with it by mathematical induction.

Thus, "nonstandard numbers" are ruled out as decisively as they can be. From
the external standpoint, they are excluded by the semantics of weak second-
order logic, which, as has been argued, is a good framework for elementary
predicative mathematics. From an internal perspective, without falling back
on special finite-set variables, we can employ standard, logicist analyses of
'finite', 'infinite', and so forth, and derive theorems in predicatively acceptable
systems that directly express the desired exclusion. This may seem like "having
one's cake and eating it at the same time." But really it is more like having two
desserts.
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NOTES

1. The class variables are given in boldface, to distinguish them from the finite set
variables.

2. As a point of difference with PFA, function variables here are given in boldface to
indicate that they are treated as special kinds of classes.

3. That, in turn, was a modification of a definition of the natural numbers proposed by
Quine (1961) using only the first conjunct in (6), which is adequate when read in
strong second-order form, but not when read in weak second-order form; cf. George
(1987, p. 515) and George and Velleman (1996, n.10).

4. For a good discussion of this and related issues, see Parsons (1990).
5. For a valuable discussion of Hilbert's structuralist views of axioms and reference in

mathematics and the contrast with Frege's views, see Hallett (1990).
6. Our construction thus improves on Dedekind's, for he relied, for a Dedekind-infinite

system, on a totality - of "all things which can be objects of my thought" (Dedekind
1888, Theorem 66) - which, even apart from its unmathematical character, is unac-
ceptable to a predicativist on logical grounds, for, presumably, such a totality would
contain itself! Furthermore, for a simply infinite system, he then relied on a subto-
tality impredicatively specified as the intersection of all subtotalities containing an
initial element and closed under the given function (1888, Theorems 72 and 44). But
it is noteworthy that the particular example that Dedekind sought to invoke to ensure
nonvacuity of his definitions was not identified as "the numbers." As it happened,
Dedekind did go on to speak of such abstract particulars, but that is another story,
and, in any case, it is a further move that we have not been tempted to make.

7. Parsons' paper appeared well before PFA, and so, the challenge was not issued
to it but rather to the kind of program that it exemplifies. That challenge was ad-
dressed briefly in the final discussion section of PFA, pp. 14-15, but is expanded on
substantially here.

8. The informal explanation of what constitutes an impredicative definition varies
from author to author. A representative collection of quotations is given by George
(1987); the explanation given in the text here is closest to that taken by George from
an article of Hintikka (1956).

9. Cf. I of I, pp. 152-3 and p. 159, n.24.
10. To be more precise, this is spelled out by means of an autonomous transfinite

progression of ramified systems, where autonomy is a bootstrap condition that
restricts one to those transfinite levels that have a prior predicative justification;
cf. Feferman (1964).

11. The relative notion of predicativity is recast by Feferman (1996) in terms of a formal
notion of the unfolding of a schematic theory, which is supposed to tell us what more
should be accepted once we have accepted basic notions and principles.

12. Parsons has an interesting discussion in I of I (pp. 143-5), of what is reasonable to
assume about the range of first-order variables in proposed definitions of the natural
numbers. We believe that the assumptions (P-I) and (P-II) are innocuous, in the
sense that the notion of ordered pair is a prerequisite to an understanding of any
abstract mathematics.

13. Addition of higher types or even set-theoretical language does not per se force us
into impredicative territory; cf. Feferman (1977).

14. There is some irony in the fact that George and Velleman, after claiming (TC,
note 10) that the Aczel construction cannot rule out nonstandard numbers without
a circular appeal to "the complement of N," present an argument of their own for
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the predicative acceptability of an extension of EFSC* in which the full induction
schema is derivable. (See their note 14.) They argue for a direct extension to include
the separation schema for finite sets with arbitrary second-order formulas. This is
closely related to the fact that, in a weak subsystem of analysis, FI is equivalent to
the so-called "bounded comprehension scheme,"

Vn3XVm(m e X *+m < n & <p(m)),

where <p(ra) is any formula of second-order arithmetic (lacking free 'X'). (See
Simpson [1985, p. 150].) This corresponds to the separation scheme for finite sets
with arbitrary second-order formulas. We prefer the direct route to full induction via
AC A and proof theory, since it is predicatively problematic to say that an arbitrary
formula "specifies unambiguously which elements of the [given] finite set are to be
included in a subset" (TC, note 14). It then turns out that their proposed stronger
separation scheme is derivable from full induction, and so inherits a predicative
justification after all. In any case, once full induction is available, the reasoning
that Af-structures are truly standard is predicatively formalizable without appeal to
finite-set variables, even while employing a standard logicist analysis of 'finite' or
'infinite' as just indicated.
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Appendix:
Realizing Dummett's Approach

in EFSC
GEOFFREY HELLMAN

Here the notation of Section I will be followed, including the use of F, G, / / , as
finite-set variables. Let 0 and ', respectively, be the initial element and successor-
like function of a given pre-Af-structure. Our principal aim is to prove the
following:

Theorem. (EFSC):
Let M =df {x : 3 F ( 0 e F & Wy(y eF&y^x-+y'eF)&xeF
& VG[[(0 e G & Vy(y eG&y^x-+y'eG)}^F<z G])} , that is, x
belongs to a (the) minimal finite set containing 0 and "closed upward except at
JC." Then (M, 0 / > is an N-structure.

Remark: Note that this definition of M incorporates both an existential con-
dition and a universal one, corresponding to the conditions Wang attributes to
Dummett (Wang 1963; cf. TC, note 10).

The proof is simplified by adopting the following abbreviations, which also
bring out the relationship between this theorem and that of Aczel:

C\osd(F, [z,x]) = z e F&Vy(y e F&y # x -> / e F),

read as "F is closed upward from z to JC." (The subscript d is for Dummett.)
Next define

z <d x by F = Clos^(F, [z, x])&x e F & VG(Clos^(G, [z, x]) -> F c G).

This can be read as "F witnesses z <d x" Trivially, if both F\ and F2 witness
z <d x, then F\ = F2 (extensionally). Now, define

z <d x = 3F(z <d x by F).

Now, M in the Theorem can be defined by M = {x : 0 <d x}. For purposes
of comparison, recall the Aczel construction, M = {x : Fin(Pd(x)) & 0 < x],
where '< ' is the ordering introduced in PFA, as in Section I, above. We now
proceed to the proof of the theorem.

Proof: Let Fx denote the unique F that witnesses 0 <d x. Then, to say that
x G M is to say that Fx exists. We have
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(i) 0 G M, to wit {0} as Fo.
(ii) Z G M - ^ Z ' G M .

Given Fz, set Fz> = Fz U {zf}. We must show that this works. Fz U {zf} is
finite, by adjunction (FS-II). 0 e Fz U {z'} and^eF z U{z '} . Now if y =
z, then trivially / € FzU{z'};andif;y ^ z,thenif y G FzU{z'}&;y ^ z',
then y €  Fz, and by hypothesis then so is / , whence yf e FZU {z'}. Thus,
Closj(Fz U [z'}, [0, z']). It remains to prove minimality.

Suppose 3u e Fz U {z'} such that u £ G, some G such that Closj(G,
[0, z']). Consider G - {z'}. If y ^ z & y G G - {*'}, y # z' either, so
/ G G - {Z'} by hypothesis on G. So, Clos^(G - {*'}, [0, z]), and so,
Fz c G — {zr}, by hypothesis on Fz. Thus, z e G — {z f}> and so, w ^ zr,
by the closure condition on G that forces z! G G. Therefore, u e Fz
but, by hypothesis that w ^ G, w ^ G — {zf} either, contradicting the
minimality of Fz. This completes the proof of minimality of Fz U [z'}
and of step (ii).

(iii) Induction, N-III: Let X be a class such that O e X and y G X -> yf e X,
all j G M.
To prove: Z G M ^ Z G X .
We will prove Fz c X, which suffices since z e Fz and indeed z G
H[G : Clos^(G, [0, z])]. Let / / = G n X, for some such G (existence
by Fz itself). H is finite by WS-Sep. We have C\osd(H, [0, JC]) by the
closure conditions on G and X. Therefore, Fz c / / = G Pi X, whence
Fz c X. •

By virtue of the unicity of Af-structures ("categoricity," Theorem 5 of PFA),
an Af-structure can be represented as of the form (M, 0 / ) of Theorem 1, that is,
the domain N of any Af-structure = {x e N : 0 <</ JC}, where 0 here is the initial
element of N and <d is defined over N via the successor-type relation on N.

As expected, the ordering <j is closely related to '< ' of PFA. This is spelled
out in the following.

Theorem. (EFSC):

(1) In any pre-Af-structure,

Z <d X -> Z < X.

(2) In any Af-structure (M, 0 / ) defined as in Theorem 1, and hence in any
Af-structure,

Z <d X «>  Z < X.

Proof: (1) and -> of (2): Suppose the implication fails, that is, that z <d x but
3A(x e A& Vy(y' e A -+ y e A) & z i A). (So, z ^ x, and z! i A, nor is
z", etc.) Let F be the witness to z <d x\ that is, F = H[G : Closj(G, [z, JC])].
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Let B = [u : u $ A & u e F}. B is finite, by WS-Sep, and z e B and
Vy(y e B & y ^ x -> y' e B)\ that is, Clos</(£, [z,x]). So, by definition
of z <d x, we have x e B, that is, x £ A, a contradiction. (Remark: Note
the similarity to the Aczel proof, except that here we are "stepping forward"
instead of "stepping back".)
<<— of (2): Now assume that we are in an Af-structure, (M, 0 / ) , as in Theorem 1.
We proceed by induction on z:

(i) For z = 0, the implication is trivial.
(ii) Let z = y. If y = x, the implication is trivial, as then y'^x. Let y^x,

and let Hy be the (minimal) witness to y <d x, which we can suppose,
by inductive hypothesis. We claim that Hy — {v} is the minimal witness
to y' <d x. Since y e Hy and y^x,yfeHy by Clos(//, [v, x]), and so,
/ G Hy — {y}. If u e Hy — [y] a n d u^x, t h e n , b e c a u s e u^y,ue Hy,
and so, u' e Hy, whence u' e Hy — {y}. (In the last step, we appeal to the
minimality of Hy, which implies that p(y) £ Hy, so that u' ^ y.) It remains
to prove minimality of Hy — [y] as witness to yr <d x. Let G be such
that Closj(G, [y\ x]), and suppose 3u such that u e Hy — {y} but u £G.
Then, u e Hy but u ^ y, so w ^ G U {y}. But, GUfj) contains y and meets
the closure condition for Hy, viz. Clos^(G U {y}, [y, x]). Therefore, by
minimality of Hy, Hy CGU{}'), contradicting the supposition of u. This
proves the minimality of Hy — {y} and completes the inductive step. •

Thus, the Dummett-inspired construction of Theorem 1, as well as the Aczel
construction, defines Af-structures, provably in EFSC. And the orderings in-
volved, <d and <, respectively, are extensionally equivalent in these structures.


