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Mathematical Constructivism in
Spacetime

Geoffrey Hellman

To what extent can constructive mathematics based on intuitionistic logic recover
the mathematics needed for spacetime physics? Certain aspects of this important
question are examined, both technical and philosophical. On the technical side,
order, connectivity, and extremization properties of the continuum are reviewed, and
attention is called to certain striking results concerning causal structure in General
Relativity Theory, in particular the singularity theorems of Hawking and Penrose. As
they stand, these results appear to elude constructivization. On the philosophical side, it
is argued that any mentalist-based radical constructivism suffers from a kind of neo-
Kantian apriorism. It would be at best a lucky accident if objective spacetime structure
mirrored mentalist mathematics. The latter would seem implicitly committed to a
Leibnizian relationist view of spacetime, but it is doubtful if implementation of such
a view would overcome the objection. As a result, an anti-realist view of physics seems
forced on the radical constructivist.

1 Introduction: the main questions
2 The constructive continuum: some key properties problematic in connection

with spacetime applications
3 Spacetime applications: the mathematical challenge (or 'It's only a matter

of spacetime')
4 The broader philosophical challenge
5 Can Leibnizian relationism help?

1 The main questions
Constructivist mathematics based on intuitionistic logic is typically motivated
by a focus on the computational capacities of agents, of human minds or
of idealized mathematical inquirers of some kind. Indeed, mathematical
statements themselves are understood as expressing computational content:
in contrast to the classical conception of mathematical propositions with
determinate truth status, about an objective, abstract subject matter consisting
of numbers, functions, sets, or other objects or structures, constructivist
propositions are associated with proof conditions, forming the basis of a
distinctive interpretation of logical connectives. "The law of the excluded
middle', for example, expresses that any proposition either is provable (in
some absolute sense) or is refutable, something that no one should wish to
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invoke as part of one's logic. And, as is well known, existence is interpreted
constructively: to prove that an object o satisfying a condition C exists is to
have a method of exhibiting or constructing o together with a constructive
proof that o satisfies C. And, strikingly, a universal claim of the form VxC(x)
carries with it a strong existential import to the effect that some method is
available for proving, of any x in the domain of quantification, that it satisfies C.
On a thoroughgoing intuitionistic interpretation of mathematical statements,
according to the standard way of explaining the meanings of the intuitionistic
logical operations, mathematics turns out literally to be about the computational
and demonstrative capacities of certain idealized agents, or perhaps about a
special realm of 'constructions' and 'proofs' discoverable by such agents. In any
case, it is not tailored to an objective interpretation along classical set-theoretic
or structuralist lines.1

For the most part, constructive mathematics in the Brouwerian tradition has
been pursued as pure mathematics, with little concern for applications in the
sciences (with the obvious exception of 'computer science', at least on the part
of constructivists accepting Church's Thesis). Yet, as Weyl proclaimed, 'it is
the function of mathematics to be at the service of the natural sciences' (Weyl
[1949], p. 61). Indeed, fulfilling this function stands as a necessary goal of any
proffered substitute for classical mathematics. An alternative that falls short in
this regard is surely not viable as a substitute, notwithstanding the strengths
and advantages it may offer as a companion.

Since the seminal work of Errett Bishop [1967], it has been clear that, in
fact, constructive mathematics is surprisingly rich in its capacity to develop
serviceable constructive versions of classical mathematical theories central in
scientific applications, including the theory of metric spaces, Banach and
Hilbert spaces, and a good theory of measure. There is little doubt that most
ordinary scientific applications of mathematics can be fitted within Bishop's
constmctivist framework (which employs intuitionistic logic but avoids the
Brouwerian theory of choice sequences). However, 'most' is not 'all', and not
all important scientific applications are 'ordinary'. As Beeson notes in his
survey, the calculus of variations, for example, especially in its concern
with existence of extremizing functions, 'lies right on the frontier between

1 Our focus in this paper is on a radical constmctivist view as just described, which treats
mathematics as having a special universe of constructions or constructive objects as its subject
matter, together with a logical apparatus understood in terms of computational capacities to build
up or 'find' such objects. Cf. Hellman [1989b] for examination of some expressive limitations of
such a framework. It should be noted, however, that not all constmctivist positions are assimil-
able to this; in particular, Richman [1996] sketches a very different picture: the objects of
constructive mathematics are supposed to be no different from those of classical mathematics,
nor are the logical connectives different connectives from the classical ones; rather, it is just that
the constmctivist will not use the Law of the Excluded Middle in proofs. Whether such a view is
ultimately coherent and workable are questions beyond the scope of this paper. In any case, the
view is prima facie not subject to the philosophical critique developed below.
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Mathematical Constructivism in Spacetime 427

constructive and non-constructive mathematics' (Beeson [1980], p. 22).
Moreover, as one considers the more theoretical side of applications, e.g. in
quantum theory, greater reliance on what appear to be essentially non-
constructive methods emerges.2 It remains an open question just how far
constructivization programmes can be pushed; and so the viability of con-
structive mathematics as an autonomous substitute for classical mathematics
hangs in the balance.

From this perspective, spacetime physics would seem a testing ground of
particular relevance. Unlike physical theories set in a mathematical framework
of state-spaces, such as Newtonian mechanics, quantum mechanics, or classi-
cal and quantum statistical mechanics, in which states themselves are in a sense
'constructed objects' and so prima facie may appear open to a constructivist
mathematical treatment (see, however, fn. 2), the application of continuum
mathematics to spacetime structures is immediate and direct. Newtonian time,
for example, is modelled directly as R1, Newtonian space as (a structure built
on) R3, Minkowski spacetime as (a structure built on) R4, and General
Relativistic spacetimes as manifolds built from charts involving open subsets
of R4. As these theories have been developed, of course, classical mathematics
has been employed. Not only have these structures thereby inherited the
essentially classical features of the continuum, such as the total linear ordering
of R1, but, as will be emphasized below, the whole modern conception of
spacetime is one that may be called 'manifold substantivalism' (following
Earman [1989]): spacetime is not thought of as merely a tool we have invented
for describing the relative positions and motions of bodies, but rather it is
conceived as a genuine, objective physical entity in its own right, supporting
matter and metric fields with a physical impact inseparable from that of the
galaxies themselves. Thus, the question naturally arises, how is spacetime
physics based on a constructivist conception of the continuum supposed to
work? What structural features would be altered and what difference would it
make? How does a constructivist mathematical treatment comport with the
'manifold substantivalist' conception just alluded to? Prima facie a Leibnizian
relationist view of space and spacetime would seem more friendly to
constructivism, since spacetime itself is viewed as a construction, a device
for keeping track of geometric and kinematic relations among actual bodies.
Is constructivism in mathematics really tacitly committed to Leibnizian
relationism in some form? Is there, moreover, a relationist framework which
can shield mathematical constructivism from the charge of 'apriorism', the
charge that it imposes limitations a priori on objective physical reality which
simply need not conform to strictures of mentalist-based pure mathematics? If

2 See Hellman [1993a, b] for some obstacles to constructivizing mathematics for quantum
mechanics. For critical discussion, see Bridges [1995], and for a rejoinder, see Hellman [1997].
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not, is there any way for constructivism to overcome such an objection? These
are our main questions. We do not pretend to provide final, definitive answers
here; but our purpose will have been served if a good start can be made, one
which may stimulate further inquiry into these and related issues.

2 The constructive continuum: some key properties
problematic in connection with spacetime applications

Here we review some basic properties of the constructive continuum which
prima facie present problems in connection with applications of mathematical
analysis to spacetime physics. Discussion of the problematic nature of some of
these properties will be postponed until the next section. To focus matters, we
will confine ourselves to three types of properties of the constructive real
number system and continuous functions thereon, properties pertaining to
order, connectivity, and extremization. (The reader already familiar with
these features may wish to skip to the next section.)

At the outset, it should be recalled that constructive mathematics begins with
familiar construction of the natural numbers, from a starting point iterating a
successor relation, this serving as a paradigm for mathematics generally.
Furthermore, the rationals are taken as unproblematic, and can be introduced
along familiar logicist lines from the natural numbers if a strict logical
construction is desired. In particular, the classical order properties of the
rationals carry over, e.g. density and trichotomy, the latter being expressed as

q\ < qi v q\ = qi v q\ > qi

However, with the real numbers, constructive and classical conceptions
diverge, not merely on what properties and relations hold but on the domain
of the objects as well. The constructivist does share with classical logicism the
undertaking of 'constructing' the reals from the rationals; in this respect both
differ from a structuralist who takes talk of 'the reals' to be a shorthand for talk
of any structure meeting certain defining conditions, such as the usual order
and field axioms together with separability (existence of a countable dense
subset) and continuity (the least-upper-bound principle). (The difference should
not be exaggerated, for indeed the structuralist may welcome constructions
based on relatively secure items to help establish coherence or realizability of
the defining conditions.) The constructivist takes real numbers as, say, Cauchy
sequences of rationals (either equivalence classes thereof or certain canonical
ones), but in the definition of 'Cauchy sequence', constructive quantifiers are to
be understood. Thus, the condition,

on a constructive reading says that a method of finding n depending on any
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Mathematical Constructivism in Spacetime 429

given it is available satisfying the requirement. (Thus, one should really attach
subscripts to the logical symbols to indicate that they carry special constructive
meanings distinguishing them from the classical ones. We shall refrain from
this to ease the notational burden, but the reader should mentally note the
intended interpretation, which should be clear from the context.) One then
speaks of 'constructive Cauchy sequences'; if Church's Thesis (CT) is
accepted, these become identified with recursive Cauchy sequences, of
which there are only countably many. Brouwerian and Bishop-inspired
constructivists do not incorporate CT into their mathematics, and, moreover,
they prove Cantor's diagonal theorem that the reals are uncountable. Never-
theless, the classicist reading Bishop, say, who appeals to the notion of a
humanly accessible rule for generating converging sequences defining real
numbers, will naturally be tempted to conclude that only a countable fragment
of the classical continuum is really ever in play in the constructivist setting.
Without pursuing this issue further here, it should be noted that it is the
constructive reading of the quantifiers that is at the root of the basic differences
in properties of the (recognized) real numbers and functions thereon that
distinguish constructive from classical analysis.

(i) Order relations:

Given real numbers, x and y, generated by Cauchy sequences of rationals, <xn>
and <yn >, respectively, equality is defined by

x = y =«T Vk3mVjJjn(\xj - yj\ < 2"*),

and the ordering on reals is defined by

x < y ^ 3k3mVjJ>m(yj - Xj) > 2~k.

x ^ y is then introduced to mean ->y < x. (Of course, these definitions make
sense classically, but the constructive meanings should be borne in mind.)

Given these definitions, the first thing to note is that equality between reals is
not a decidable relation: x — yV —>x = y is not a theorem of constructive
mathematics. This corresponds to the impossibility of 'dividing the line'.
Suppose we could determine, of any real x, whether it equals y or not. Then
we could, for example, determine whether the real < r^> defined by

/•„ =
A_ if 2n is not a counterexample to the Goldbach conjecture

A — i if Jt is least ^ n such that 2k is a counterexample
2 2]

is indeed = \ or not, which would in turn decide the Goldbach conjecture.
Since we have no method of doing this, we have no method of deciding the
equality relation. (Of course, once this problem of number theory were to be
solved, it could no longer be used in such an argument as a so-called 'weak
counterexample', but then another unsolved problem of similar logical form
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could be. Such arguments of course do not refute the proposition being
reduced, in this case x = y V ->x = y, but they tell us that we cannot include
the proposition as part of constructive mathematics.)

Note, incidentally, that the above construction provides a weak counter-
example against the classical least-upper-bound principle. A constructive
solution to this—i.e. a method of identifying the least upper bound (or greatest
lower bound) of any given non-empty bounded set of reals—would solve the
halting problem. As applied to the set {|, < rn >} as denned above, it would
tell us whether the greatest lower bound is | or something smaller, which would
solve the unsolved problem of the construction.

For analogous reasons, the law of trichotomy for reals is not acceptable, viz.

x < y Vx — yVx>y,

and neither is

x < 0 V x > 0.

These statements can readily be shown to reduce a form of the halting problem
and so cannot be part of constructive mathematics. (For further details, see
Beeson [1980].) Given the intuitionistic logical apparatus on which these
statements are built, it should be clear to the classicist as well as the
constructivist why these statements cannot be constructive theorems, despite
the fact that, read classically, they are easily demonstrable from logicist
constructions and could even be taken as axiomatic in a structuralist system.

Still, of course, the constructive ordering < does satisfy some important and
useful conditions, in particular

^x—* x = y

and
x <z—+x<y V y < z, any y,

i.e. < is said to be a 'comparative order'. (The first condition alone defines a
'weak ordering'.)

(ii) Connectivity:

A good illustration here is the Intermediate Value Theorem, for instance the
special case (known as Bolzano's theorem) which states that any continuous
function/defined on the interval [0,1] satisfying/(O) = —1 and / (I) = +1 has
a zero, i.e. 3x(f(x) = 0). Classically this is proved easily from the least-upper-
bound principle together with the weak order property (see e.g. Apostol
[1961], p. 169), but constructively it cannot be proved in this precise form.
(A constructive solution to this problem would provide one to the problem t ^ 0
V t > 0, which, as we have seen, is unacceptable (cf. Beeson [1980], pp. 11-
12). On the other hand, there are constructive versions of the Intermediate
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Mathematical Constructivism in Spacetime 431

Value Theorem, indeed of two sorts. There is, first, a weakened conclusion
version, that every continuous / as above can be found to take on a value as
close to 0 as one pleases, i.e. for any such/

Ve3x(|/(x)| < e).

(See e.g. Troelstra and van Dalen [1988], p. 293.) Second, one can prove a
strengthened hypothesis version. Let x #y (read x is apart from y) be defined as
x < y V y < x, i.e. < xn > is eventually bounded away from < yn >. Next write
C(f) to abbreviate the condition that for any two points x and y in the domain of
/, there is a z such that x < z < y andf(z) # 0. Then it can be proved constructively
that any continuous function/, as above, such that C(f) has a zero, i.e.

C(/)-3x(/Oc) = 0).

(See Bridges [1979], p. 30; cf. Troelstra and van Dalen [1988], p. 294.)
Since important classes of functions, e.g. real-analytic functions, satisfy the
condition C, this is a very useful result, in effect an important special case of
the classical result. As Beeson points out, this illustrates nicely the way in
which classical theorems split into two or more corresponding constructive
theorems.

(iii) Extremization:

An important classical theorem in analysis, the 'Extreme Value Theorem',
states that a continuous function on a compact domain assumes its maximum
(minimum) value at some point. As a special case, any continuous real-valued
function on [0, 1] assumes its absolute maximum (minimum). This theorem is
essentially non-constructive, requiring for its proof the least-upper-bound
principle or a related non-constructive property (e.g. Cauchy or sequential
compactness, the Bolzano-Weierstrass theorem, etc.). Indeed, one proves that
this problem—to find the point at which the extreme value is assumed—
reduces the problem, i < 0 v x ^ 0 , which, as we have noted above, in turn
reduces a version of the halting problem (cf. Beeson [1980], pp. 10-11). Here,
as in the case of the Intermediate Value Theorem, there are constructive
substitutes, but they are essentially weaker, in this case significantly so. One
first replaces the hypothesis of (mere) continuity with uniform continuity;
classically, but not constructively, one proves the famous result that continuous
functions on a compact set are uniformly continuous (see, for example,
Dieudonne [1969], p. 60, Theorem 3.16.5); constructive mathematics bypasses
this by simply assuming uniform continuity when it is needed (what the
construedvist might concede to be 'theft over dishonest toil'). Then it can be
proved constructively that i f / i s uniformly continuous, the supremum (infi-
mum) of its range can be computed, and, hence, that it is approximated

 at U
niversity of M

innesota - T
w

in C
ities on July 12, 2016

http://bjps.oxfordjournals.org/
D

ow
nloaded from

 

http://bjps.oxfordjournals.org/


432 Geoffrey Hellman

arbitrarily closely by values of/, but it cannot be proved constructively that it is
actually taken on at any point (see e.g. Troelstra and van Dalen [1988], pp.
294-5). As Beeson points out, in analysis one frequently considers compact
function spaces and continuous functionals thereon such that the point at which
an extreme value is taken on is the solution of a differential equation or of a
variational problem: "The fact that we cannot find the solution is a major
difficulty in construedvizing this branch of mathematics [calculus of varia-
tions]—a branch conspicuously absent from Bishop's work and that of his
followers, and ripe for constructive treatment' (ibid.). Indeed, in the next
section we shall call attention to a generalization of the Extreme Value
Theorem which is used crucially in the proofs of spacetime singularity theo-
rems.

3 Spacetime applications: the mathematical challenge
(or 'It's only a matter of spacetime')

The mathematical challenge can be easily stated: to find adequate constructive
substitutes for classical analytic properties and theorems applied in spacetime
physics and physical geometry. Assessing the situation is considerably less
easy, however, in part because of the loaded terms 'adequate substitute' and
even 'physics', whose interpretation can turn on philosophically weighty
matters such as scientific realism versus varieties of empiricism, instrument-
alism, etc. Clearly the narrower the conception of 'physics' or 'science'
generally, the easier it will be for a constructivist mathematics to 'meet the
needs of the science'. But this complexity need not deter us; for the case can be
explored conditionally, and one can ask: on the assumption that 'physics'
includes 'theoretical physics' and that a largely realist interpretation of phy-
sical theory is to be taken seriously—following, say, the modest principles of
Hellman [1983] or the closely related 'homely line' Arthur Fine chose not to
call 'realism' but dubbed 'NOA' instead ('Natural Ontological Attitude',
Fine [1986])—can constructive mathematics recover enough? Should it
emerge that constructivism in mathematics is tacitly committed to a
strong form of empiricism, instrumentalism, or a similar anti-realism concern-
ing physical theory, that in itself would be an interesting and important
conclusion.

Beginning with the most elementary properties of space, time, and
spacetime, surely it is taken for granted in classical physics that these are
continuous manifolds in the classical sense, and, in particular, that time is
totally linearly ordered (i.e. satisfying trichotomy), that spatial lines are so
ordered, that particle trajectories are also, and so on. Indeed, it was historically
the need to describe such manifolds with mathematical precision that led to the
development of classical analysis in the first place. If, on the constructivist
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Mathematical Constructivism in Spacetime 433

conception, the continuum is not even totally linearly ordered, how can the
most elementary presumed properties of space, time, and spacetime be
described mathematically?3

Now the liberal constructivist, who allows for peaceful coexistence, may
concede that the classical spacetime conceptions are legitimate, that they
cannot be assumed to be fully represented by the constructive continuum,
and that, perhaps, at this point, the classical conception must be brought
in. Constructive analysis would still apply in part and might provide insight
into constructive properties of spacetime continua, even 'empirically
constructive properties', to the extent that there is an analogy between mathe-
matical methods of 'finding' or 'constructing' real numbers or values of
functions, on the one hand, and empirical methods of approximating instants,
spatial points, or spacetime points, on the other. But what about the radical
constructivist who rejects non-constructive classical analysis as incoherent or
deficient in meaning and, in any case, doesn't allow for peaceful coexistence?

Such a constructivist would presumably put the question to the classicist:
'How do you know, for example, that moments of time are totally linearly
ordered, or that spatial paths are, etc.? Certainly such things cannot be proved
[i.e. constructively proved, without LEM]. The very reasoning that blocks us
from adopting trichotomy for the real numbers carries over to spacetime
manifolds; and similarly for other illegitimate classical principles such as
the least-upper-bound principle. The fact that historically such classical prop-
erties first arose in the context of space and time, and influenced the develop-
ment of mathematical analysis, can in no way override the philosophical critique
of those ideas based on considerations of meaningfulness and the very possi-
bility of communication' (as set out, for example, in the writings of Michael
Dummett, especially Dummett [1977]). The radical constructivist thus 'bites
the bullet' and is even willing, should it turn out to be necessary, to say, 'So
much the worse for physics!' It may be hoped, of course, not to be necessary:
the constructivist may seek to replace mathematical physics as we know it
with a thoroughgoing, constructive mathematical physics, and claim that the
replacement is adequate to any legitimate purpose. It is noteworthy, however,
how undeveloped such a project has remained since Brouwer.

In response, the classicist can reply: 'How do we know that the ordering
of temporal instants (in the setting of classical physics, for simplicity) is
dense, or that it is Archimedean? Even if we confine ourselves to instants
labelled by rational numbers, these properties are not known by any sort

3 'Presumed properties', we say, because we do not really wish or need to rule out discrete space-
time, for example. Indeed, we are sympathetic to the philosophical stance taken on this question
by Forrest [1995]. As will emerge below, what matters ultimately in the present context is
not which hypotheses about spacetime happen to be factually correct, but which formulate
conceptually coherent possibilities that science needs to be free to entertain.
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of direct empirical testing. But from the standpoint of constructive mathe-
matics, they are unproblematic. This already shows that, whatever their super-
ficial similarities, knowability-through-constructive-mathematical-proof and
knowability-through-direct-empirical-testing are two quite different things. It
may be conceded that none of these properties of spatio-temporal orderings (of
instants or points) is known directly empirically. What matters, rather, is
the meaningful applicability of classical mathematical structures as useful,
perhaps indispensable, models of spatio-temporal reality. Once such models
are in place, the empirical success and fruitfulness of the relevant branches
of physics can provide a kind of indirect confirmation of presuppositions
concerning the mathematical structures exemplified by space, time, or space-
time.4 The very same can be said of constructivist mathematical structures that
might be applied to spacetime. Thus, once the meaningfulness and coherence
of classical mathematical presuppositions are granted, the game is over in this
stage of the debate between the radical constructivist and the classical math-
ematician. The question of empirical knowability, however interesting in its
own right, is a red herring in this context.'

There is, moreover, a further, equally telling point the classicist can make,
namely that the constructivist reasons for resisting, e.g., trichotomy for real
numbers are simply irrelevant to the question of trichotomy as a relation
among temporal instants or spatial or spatio-temporal points. There are two
aspects to this. First, there are the constructive quantifiers and sentential
connectives with their distinctive constructive meanings built into the very
constructive statement of 'trichotomy'. The classical statement of trichotomy
uses classical quantifiers and connectives; when it is asserted, for example, that

x i= y—*x<y V y <x,

it isn't claimed that, given the antecedent, there is a method for finding that one
of the relations on the right holds, that < yn > is eventually bounded away from
< xn >, above or below. It is merely asserted that one of these relations happens
to hold in fact, even if we have no method of 'telling' or 'proving' which.
This distinction—between distinct laws of trichotomy, intuitionistic and
classical—pertains both to real numbers, construed as (equivalence classes
of) Cauchy sequences of rationals, and to the spatio-temporal point objects
that may be represented by reals. Second, and related, when the constructi-
vist presents an argument by counterexample to trichotomy, understood

4 As Weyl put it so well, in the continuation of the paragraph from which we quoted above: "The
propositions of theoretical physics, however, certainly lack that feature which Brouwer demands
of the propositions of mathematics, namely that each should carry within itself its own intuitively
comprehensible meaning. Rather, what is tested by confronting theoretical physics with experi-
ence is the system as a whole' (Weyl [1949], p. 61). This view, of course, became a central theme
of Quine's and is at the core of one kind of 'indispensability argument' associated with Quine and
Putnam.
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Mathematical Constructivism in Spacetime 435

intuitionistically, or to decidability of = between reals, etc., what it shows,
from the classicist perspective, is that we have no constructive method of
telling which spatio-temporal point is represented by a certain rational
sequence as presented, i.e. in the counterexample. Even if we agree to
define real numbers by convergent rational sequences, the classicist can
resist identifying such a sequence with its presentation or specification; and,
moreover, she will certainly resist identifying such a presentation or rule for
generation with a spatio-temporal object. Of course it may not be known of
certain specifications of real numbers which spatio-temporal points
they represent, under some given scheme setting up a representing homo-
morphism between reals and points. Whatever implications this may have for
ordering relations among constructive reals considered as given by such
specifications, this has nothing to do with an objective order relation among
the spatio-temporal points themselves.

This raises some philosophical questions to be pursued further in the next
section. But what of theorems of spacetime physics? Is the restriction to
constructive logic, i.e. intuitionistic logic, really any hindrance? A full
answer to this question is beyond the scope of this paper, but let us call
attention to one topic whose standard treatment is essentially non-constructive,
but which arrives at some of the most striking results in general relativity and
cosmology, namely the spacetime singularity theorems of Hawking, and
Hawking and Penrose. For full details, the reader should consult Wald
[1984] and O'Neill [1983]. Here we will just mention the main points relevant
to the problem of constructivization.

The spacetime singularity theorems fall within the topic of causal structure
of Lorentz manifolds. A central question which plays a crucial role in the
proofs is the existence of length-maximizing geodesies in manifolds satisfying
various specified conditions, e.g. absence of closed, causal curves, compact-
ness of sets containing all (future-pointing) causal curves from p to q, etc. It is
exactly here that problems of essential non-constructivity arise, for what is
involved is a generalized form of the Extreme Value Theorem, reviewed
above.5 Wald's treatment brings this out clearly, as with the theorem numbered
9.4.4 (pp. 236-7):

Theorem (9.4.4) Let (M, g^) be a globally hyperbolic spacetime (equiva-
lently, possessing a Cauchy hypersurface). Let p, q G M with qG.J+(p) (i.e. q
lies in the causal future ofp). Then there exists a curve y £ C(p, q)for which
the length function T attains its maximum value on C(p, q). [C(p, q) is the set of
continuous, future-directed causal curves from p to q.J

3 For conciseness, we are bypassing applications of the Intermediate Value Theorem. As indi-
cated, however, reasonably good constructive versions of this are available, whereas the
applications of the Extreme Value Theorem to be described remain a substantial challenge for
constructive mathematics.
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The proof proceeds in two non-constructive steps. In the first, previous
developments are cited for the compactness of C(p, q), going back ultimately
to the Bolzano-Weierstrass theorem. (Here one needs a subtheory of limits of
sequences of causal curves, developed in O'Neill [1983] as 'quasi-limits' (pp.
404ff.). This whole subtheory is non-constructive, depending repeatedly on the
Bolzano-Weierstrass theorem or, equivalently, sequential compactness.)
Then the upper semi-continuity of the function T is cited and, in the second
non-constructive step, the Extreme Value Theorem for such functions on a
compact domain is invoked. Wald then presents an exactly analogous theorem,
9.4.5, in which the point p of 9.4.4 is replaced by a Cauchy surface E.6

These theorems, together with previous theorems placing limits on how far
length-maximizing geodesies between a hypersurface and a point can be
extended, are then used to prove the singularity theorems (9.5.1 and 9.5.2 in
Wald, 55A and 55B in O'Neill).7 As Wald puts it:

[These and two further theorems] establish the existence of singularities in
the sense of timelike or null geodesic incompleteness under conditions
relevant to cosmology and gravitational collapse [The first, due to
Hawking] can be interpreted as showing that if the universe is globally
hyperbolic and at one instant of time is expanding everywhere at a rate
bounded away from zero, then the universe must have begun in a singular
state a finite time ago (Wald [1984], p. 237).

The second theorem, also due to Hawking (9.5.2 in Wald, 55B in O'Neill),
removes the assumption of global hyperbolicity, replacing it with the assumption
of a compact, spacelike hypersurface, and proves less, viz. that there exists at
least one inextendable, past-directed, timelike geodesic from the compact hyper-
surface with length no greater than a specified bound. Furthermore, a still
more widely applicable theorem, due to Hawking and Penrose [1970], is
stated (as Theorem 9.5.4 in Wald [1984]), in which both the assumptions
of global hyperbolicity and of expansion everywhere are eliminated,
although no information is provided concerning which timelike or null geodesic
is incomplete. The proofs of all these theorems rely heavily on the existence of
length-maximizing geodesies (9.4.5, above) and sequential compactness. They
establish geodesic incompleteness of any Einsteinian spacetime meeting the
surprisingly general stated conditions, which amount to little more than gravita-
tional attraction, the absence of closed timelike curves, and past (or future)
convergence of a suitable geodesic congruence. The theorems do not tell us

6 The essential non-constructivity of this theorem, which can be illustrated by weak counter-
example, should be compared with the simpler but analogous result on the surface of a sphere,
where the problem of proving the existence of a length-minimizing geodesic between arbitrary
given points is essentially non-constructive (cf. Beeson [1980], p. 20, Exercise 1).

7 For a clear overview of die reductio structure of the argument leading to spacetime singularities,
see Wald [1984], p. 212. A thoughtful discussion of the singularity concept follows, and then the
mathematical details are clearly set out in the remainder of the chapter (9).
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how to construct an inextendable, finite-length geodesic; and the first does not
even arrive at a contradiction constructively from the assumption that not every
past-directed timelike curve from the Cauchy hypersurface has length within a
certain bound. Nevertheless, these are physically highly significant theorems
establishing the existence of striking anomalies in a surprisingly broad class of
spacetimes, not just those of a highly symmetric character, such as the Robertson-
Walker spaces.8 Our own universe may well be covered by the more general
theorems. Indeed, as Wald puts it, "Theorem 9.5.4 gives us strong reason to
believe that our universe is singular Thus, it appears that we must confront
the breakdown of classical general relativity expected to occur near singularities
if we are to understand the origin of our universe' (Wald [1984], p. 241).

All this raises two questions. The first is simply whether constructive
mathematics can find reasonable alternative formulations of such theorems
and prove them constructively. The conclusions of such theorems should
presumably provide more information than the classical ones—it would
undeniably be good to know 'how to find singularities'—but offsetting stronger
hypotheses are to be expected. The second question is whether the constructivist
should bother to try. Here differing opinions are certainly possible, depending
in part on one's conception of 'physics' and the role of mathematical models of
physical reality. On the one hand, a scientific realist is inclined to take an
empirically successful theory seriously even in its highly theoretical aspects. In
the present case, surely it is important to learn that classical General Relativity
breaks down in certain cosmological and gravitational-collapse contexts, that
certain prima facie appealing cosmological models, such as a non-singular
'bouncing universe', are ruled out by certain reasonable energy conditions and
the other spacetime conditions needed for the singularity theorems. On the
other hand, it is possible to stand back from the singularity theorems and view
them as merely a kind of commentary on our theories and models, and not
really 'part of physics'. (Indeed, one of the leading contributors to the subject
of models of GTR and singularity theorems, Robert Geroch, has expressed
views along these lines.)9 If one holds the mathematical constructivist to the
task of recovering only that mathematics which leads directly to testable
empirical results, constructivizing such results as the singularity theorems
may appear recherche or as a purely recreational enterprise. Without attempt-
ing to resolve this dispute here, let me suggest that, regardless of how one
wishes to use the honorific term 'physics', there is no easy way to separate
learning about models of successful theories—which we may have good

8 It should be pointed out that, in the case of Robertson-Walker spaces, a cosmological singularity
theorem can be proved constructively. (It is possible to give a constructive proof of, e.g.,
Proposition 15 of O'Neill [1983], p. 348.) However, the theorems of Hawking and Hawking
and Penrose highlighted here are of far greater generality, applicable to a much wider range of
spacetimes, and hence of greater significance.

9 In personal communication.
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reason to believe are at least partly, probably, approximately true—from
learning about physical reality. From this perspective, there is a strong case for
holding the mathematical constructivist to the higher standard: mathematics must
be rich and flexible enough to allow entertaining the widest range of conceptual
possibilities, for we simply cannot say in advance just which kind of universe we
occupy. We will continue with variations on this theme in the next section.

4 The broader philosophical challenge
There is a general philosophical problem confronting radical constructivism
which began to emerge when we considered spatio-temporal ordering relations
above. It arises as follows. Recall that radical constructivism conceives of
mathematics as a theory of computational procedures and objects. We can say
it is agent-oriented: it is concerned ultimately with the mental capacities of an
idealized human mathematician. As Bishop put it: 'When a [hu]man proves a
positive integer to exist, he should show how to find it. If God has mathematics
of his own that needs to be done, let him do it himself (Bishop [1967], p. 2).
Thus, the 'principle of omniscience'—that all elements of a set A have a
property P or some element of A lacks P—has no place in constructive
mathematics (and so, for the radical constructivist, no place in mathematics).
Thus, 'constructive existence is much more restrictive than the ideal existence
of classical mathematics. The only way to show that an object exists is to give a
finite routine for finding it..." (Bishop [1967], p. 8). As Dummett concedes,
however, such a view is questionable in connection with objects in general,
say stars. Closer to home, forensic evidence may convince us beyond any
reasonable doubt that a person died due to a homicide, hence that a killer exists,
without any method of finding the killer being provided or providable. (Maybe
the mystery is genuinely unsolvable.) But, Dummett says, such considerations
are irrelevant to mathematics; for example, the classicist's point that 'there is
no absurdity in thinking of an infinite totality [say of physical objects] as
already formed . . . cannot be applied to mathematical totalities, whose ele-
ments are mental constructions' (Dummett [1977], p. 58).

Now the problem should be clear: in physics and other sciences, we
frequently employ mathematical structures as models of some parts or aspects
of the physical world; but if those structures are constrained by constructivist
restrictions, based on the mentalist conception just described, what reason is
there to suppose that objective physical structures will be captured? Why must
functions representing physical magnitudes necessarily be constructive func-
tions? Why must relations, such as order relations, be constrained only by
constructively correct conditions (e.g. comparative order, as opposed to total
order)? Why must instants or points be representable by constructive real
numbers, as opposed to arbitrary real numbers? To insist that such restricted
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representations are required by human thought would be to commit apriorism
no less egregiously than did Kant, as we can now say with hindsight,10 when he
argued that space and time 'must' be Euclidean lest we not be able to form a
coherent conception of a located material object. The point can also be put in a
somewhat different way. Grant, for the sake of argument, the constnictivist
view of pure mathematical postulates, that they should have the 'evident'
character and certitude of constructive truth. Why should these standards carry
over to applied mathematical postulates, i.e. to scientific hypotheses concerning
physical structures mathematically described? After all, no one expects certitude
of such hypotheses; we consider ourselves lucky if we can just achieve
empirical adequacy. Why should there be any restrictions a priori on the
character of the mathematics that may be used to describe real or idealized
physical systems?

One answer can be found in writings of Dummett: to transcend the bounds of
intuitionistic logic is to transcend the bounds of sense; to succeed in commu-
nicating with language, something analogous to the intuitionistic proof-
conditions must be understood, not classical truth conditions, which are seen
as inaccessible (see e.g. Dummett [1991]). This line of argument, of course,
applies across the board to any subject matter, not just mathematics. To this
writer (and as Dummett seems to concede), this is in effect a revival of the
verification theory of meaning; but it seems subject to much of the many-
faceted critique of that theory that has been developed over several decades in
the middle of this century. Recall briefly some of the salient points brought
out by that critique: a hidden reliance on counterfactuals (a point conceded
in Dummett [1991]); the relativity of testing to background assumptions
(confirmation being at least a three-place relation, not simply a two-place
one between hypothesis and evidence); and, generally, the inability of verifi-
cationism to explain much linguistic functioning as it is ordinarily described.''
Confronted by this, the radical constnictivist may adopt the more modest tack
alluded to above, conceding that physical objects and structures need not in
fact conform to constnictivist strictures, but still insisting that mathematical
objects and structures must.

10 Whether Kant's view was a defensible one given the science of his day is a question we can
safely bypass here.

11 It is just here that circularity threatens on all sides. If objects of a certain type (e.g. unobservable
physical objects such as atoms and their constituents, not to mention mathematical abstracta) are
taken for granted, and it is therewith assumed that indeed we do succeed in referring to such
things with language, then this is a kind of functioning that an adequate meaning-theory must
account for, and for well-known reasons verificationist accounts face apparently insuperable
obstacles. If, on the other hand, an anti-realist position with respect to such putative objects is
adopted at the outset, then there is no such reference for a theory of meaning to account for.
Despite this evident situation, a persistent theme of Dummett [ 1991 ] is that a theory of meaning
based on 'use' must somehow be developed prior to any 'metaphysical' assumptions. On our
view, which cannot be argued for here, any such attempt to reinstate a 'first philosophical'
theory of meaning prior to all science is doomed.

 at U
niversity of M

innesota - T
w

in C
ities on July 12, 2016

http://bjps.oxfordjournals.org/
D

ow
nloaded from

 

http://bjps.oxfordjournals.org/


440 Geoffrey Hellman

This, however, will simply not do. Mathematics of the continuum, after all,
can be developed in such a way that mental objects—and even abstract objects,
if that is the construed vist's worry—are entirely avoided: in fact, all one need
do is entertain the logical possibility of sufficiently rich physical structures.
Indeed, the possibility of a discrete infinity of atomic individuals, together with
arbitrary wholes formed from them, suffices to recover the vast bulk of
scientifically applicable mathematics (cf. Hellman [1989a, 1996]). Now, the
radical constructivist who grants that reasoning about even infinite physical
structures may obey full classical logic faces a little dilemma: on the one
hand, if it is also conceded that at least this much pure mathematics (i.e.
scientifically applicable mathematics) can be conceived and developed classi-
cally, then radical constructivism collapses to a liberal variety, admitting
peaceful coexistence. This avoids the apriorism charge ('wins the battle')
but at the cost of renouncing the radical position ('losing the war'). Alterna-
tively, if somehow this concession is resisted, to allow that physical objects
and structures need not conform to constructivist strictures, while insisting
nevertheless that mathematical objects and structures must, is to leave the
radical constructivist in a self-defeating position: for in effect it has been
conceded that there is no a priori reason why constructivist mathematics ought
to suffice for physical applications, while at the same time a richer alternative
has been disallowed. No wonder classicists resist reformation.

What this shows so far, I believe, is that radical constructivism which grants
the coherence of classical reasoning about the physical is inherently unstable.
To preserve a viable identity, it must instead acknowledge continuity between
mathematics and physics on the question of what type of logical reasoning is
coherent, that is, it must insist upon intuitionistic logic only for both. But then it
is driven back to confronting the apriorism charge all the more starkly. For
now, in addition to the typical questions concerning mathematical modelling
raised above in describing that charge, there can be added more general
questions such as, 'Why should it not even be logically possible that infinitely
many particles actually exist with determinate properties not "decidable" by
us, whatever' 'decision methods'' are allowed?' Whether somehow this charge
can be averted or circumvented will be discussed further in the final section
below.

To conclude this section, we should consider a recent argument that con-
structive mathematics a la Bishop is not really more restrictive in applications
than classical mathematics. Were it correct, it would undercut much of the
force of the arguments of tfus paper. It runs thus: 'You have been arguing as if
constructive mathematics is more restrictive than classical mathematics, and
indeed this is a view commonly taken by classicists trying to understand
constructive mathematics, and it is suggested by some constructivists'
remarks. However, there is a clear sense in which Bishop's constructivism is
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more general than classical mathematics: since it is characterized by classical
logic less the LEM (or anything implying it), every constructive theorem is
also a classical theorem. The difference is that, since LEM is not used,
constructive theorems hold in a wider class of structures, including not only
any classical structures but also structures in which the logical apparatus
receives a constructive interpretation. So while it is true that constructive
proof demands "more" than classical proof, the applicability of constructive
results is more extensive than that of classical results' (this paraphrases
Richman [1996]; see also fn. 1.)

This is an interesting logical point, and it indicates one clear advantage of
Bishop's approach to constructive mathematics over intuitionism: by working
with a proper subset of classical axioms and not adding new ones, such as the
continuity principles in the theory of choice sequences, all results obtained in the
Bishop framework are classically correct, but open to a constructivist interpreta-
tion. However, this increased generality—call it 'logical generality'—is offset
in two significant ways. Firstly, it is offset by the need for stronger hypotheses
and/or weaker conclusions in theorems of conditional form (which are typical):
since the logic is weaker, these adjustments are needed to take up the slack,
unless the classical theorem is constructively valid as it stands. Schematically,
the situation can be depicted as follows, where Lco stands for 'core logic' —
constructive logic, A(+) is the hypothesis of a theorem, and C ( - ) is the conclu-
sion:

Classical

+LEM
A

I
C

Constructive

A+

i
cr

While the constructive conditional theorem, A+ -» (5 ', can indeed gen-
erally be given more interpretations of its logical vocabulary, in another
sense—of far greater interest in scientific applications of mathematics—the
classical theorem is 'more general' in that its conclusion, C, is proved to hold in
a wider variety of situations to the extent that A+ is a stronger hypothesis than
A. (One may call this 'generality of conclusions'.) Thus, in the basic example
of the Intermediate Value Theorem, the classicist proves that intermediate
values are taken on by any continuous function on a compact set, whereas the
constructivist proves this only for restricted subclasses of functions, e.g. the
real-analytic ones. This is typical of a great many constructive theorems. And, if
our assessment above is sound, the constructivist will be able to prove geodesic
incompleteness at best for a restricted class of spacetimes, as compared with
the Hawking or Hawking and Penrose theorems. In general, in scientific
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applications of mathematics, the goal of explaining and understanding natural
phenomena is paramount, not achieving a constructive interpretation of results,
and so from this perspective, we submit, it is this second kind of generality that
really matters.

Secondly, moreover, it is not just that stronger hypotheses are often needed
by the constructivist. Whole axiom-systems are at stake. Consider the axioms
for a complete, separable, ordered continuum, for example; classically, this
includes the least upper bound principle or something strong enough to imply
it, and, of course, it will specify a total, linear ordering. Now such an axiom
system may be understood in two quite distinct ways, either as descriptive of
some already recognized domain, or as implicitly defining a type of structure of
interest. Taken in the first way, to be constructively acceptable the axioms have
to be constructively true over an intended domain, which in this case they
surely are not. Taken in the second way, presumably the constructivist will
require a constructive proof that such structures exist or are possible. In this
example, no such proof is available, so even as an implicit definition—though
quite possibly intended to introduce models for physical applications—such
an axiom system is not constructively acceptable. Thus, the constructivist
approach to axiomatics is indeed much more restrictive than the classical,
and so the charge of an unjustifiably restrictive apriorism vis-a-vis scientific
applications of mathematics still has its force, in spite of the increased logical
generality of Bishop-style constructivism.

5 Can Leibnizian relationism help?
As already suggested, the argument of the last section, as it pertains to space-
time, applies in the first instance to the view of spacetime known as manifold
substantivalism, the view that accords genuine physical reality to the space-
time manifold itself. Spacetime as a domain of points is what supports matter
fields and even the metric itself; it is physically objective as much as are the
more commonplace objects and events that occur in spacetime. Of course, in
General Relativity, spacetime is not a fixed background like Newton's space; it
is a dynamical object which evolves interdependent^ with energy-momentum.
But, if anything, this dynamism helps reinforce a straightforward substantival
interpretation of the mathematical structure, a Lorentz manifold, for it makes it
difficult to regard spacetime as a 'nomological dangler', an extraneous fiction
useful merely for descriptive purposes.

It is, of course, the objective physical status of spacetime that prompts the
charge of apriorism levelled at the radical mathematical constructivist who
would impose mentalist strictures on spacetime relations and structures.
Indeed, the argument of the previous section could be called 'the argument
from objectivity of spacetime'. This naturally leads one to ask whether
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the constructivist can evade this argument by simply rejecting manifold
substantivalism outright and opting for a Leibnizian, relationist view of space-
time. One expects that such a view is more congenial to constructivism, since it
denies physical reality to spacetime and itself seeks to 'construct' or 'recon-
struct' talk of spacetime as merely a convenient device for encoding relations
among more palpable things. Provided that such relations can be adequately
mathematized within constructivist systems—a substantial if, to be sure—
constructivism would seem to be off the hook and free to counter-charge the
platonist mathematician with multiple counts of . . . well, platonism. As if
Cantor's heaven weren't enough, the heavens themselves also are treated as an
object, 'above and beyond' (= underlying!) all matter-energy.

On a closer examination, however, matters turn out to be anything but
straightforward. The whole question of Leibnizian relationism has recently
been examined in detail, taking account of relativistic physics, by Earman
[1989], and his treatment serves us as a useful guide.

First, it is necessary to distinguish two relationist theses, frequently con-
flated: the first, which Earman labels Rl, asserts that all motion is relative
motion, that it makes no sense, for example, to say of the two isolated spheres
of Newton's famous thought experiment, that one of them is absolutely
rotating whereas the other is not. This thesis is simply not tenable in the
context of our best spacetime physics. In General Relativity, absolute rotation
is well defined, and Mach's principle, according to which observable effects of
rotation, centrifugal forces, etc. are to be explained with reference to the fixed
stars, is simply not respected. Since Rl was used by relationists to motivate the
rejection of absolute space, its failure deprives relationism of one of its
underpinnings. Of course, absolute space is avoided even in classical New-
tonian gravitation theory (where Galilean relativity reigns), but 'absolute'
spacetime is an entirely different story, and, as already indicated, survives in
the form of manifold substantivalism as the natural, direct reading of GTR. The
second relationist thesis, R2, is a direct denial of substantivalism: spatio-
temporal relations among events and bodies are direct, and there is no under-
lying reality of spatio-temporal points or regions. The appearance to the
contrary stems from too literal a reading of the mathematics of differentiable
manifolds; such purely mathematical structures are merely a useful device for
codifying relations among events, and should not be understood as representing
an entity, 'spacetime'. 'Antisubstantivalism' is a more accurate term for this than
'relationism'. And it is this thesis that concerns us here, as a potential ally of
mathematical constructivism.

Although Rl fails, Earman finds independent motivation to pursue R2 in
an application of the method of Einstein's 'hole argument': because substan-
tivalism regards manifolds related by a diffeomorphism as corresponding to
distinct physical possibilities, it turns out to be guilty of its own form of
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apriorism, namely that it rules against the very possibility of determinism
in advance (Earman and Norton [1987]). Although substantivalists have
responses (which Earman [1989] reviews), this motivates further development
of the relationist (R2) program. A persistent theme of Earman's is that a
thoroughgoing relationist treatment of GTR simply does not exist, and that it
is unclear whether it is even possible. Two approaches are examined, and it is
appropriate for us to ask whether either of them can lend any comfort to
the mathematical constructivist.

Let us consider first the approach Earman considers second (Earman [1989],
Ch. 9, section 10), based on a 'plenum of physical events'. The idea, which
derives from Reichenbach's writings, is to take causal relations on a domain X
of pointlike events as primitive and to attempt to recover enough structure to
carry out spacetime physics. Earman considers the most straightforward
interpretation of this, namely to recover substantival models of the form M, g
of GTR, where M is a differentiable manifold and g a metric tensor of Lorentz
signature. Thus, points are constructed as equivalence classes of events of X,
equivalence being defined as bearing the causal relations of timelike, lightlike,
and causal precedence to all the same events. A topology is induced on the set of
points by taking as a basis sets of the form I+(p)nI~(q) where I+(p) is the set
of points timelike connected from p, and l~{q) is the set of points timelike
connected to q, where the relation of timelike connectedness is transferred in
the obvious way from the relation on X. (Orientability of the manifold is
assumed.) Earman points out that this builds in strong causality, violated in
some models of GTR, which then would have to be argued to be unphysical.
More serious is the circumstance that differential structure has yet to be
recovered. But even if this can be done, by introducing enough machinery
on the set X, there is still the 'whiff of circularity' involved in positing a
plenum of events which, presumably, are in many cases nothing but the
assuming of (exact) field values, and, since the g-field, at least, is everywhere
defined, this means that to every manifold point there corresponds such an
'event'. In the present setting, in any case, 'whiff is clearly a euphemism: the
plenum X is posited as a mind-independent physical entity as much as is the
substantivalist spacetime manifold; its pointlike objects and the relations they
bear to one another are just as much prior to and independent of computing
agents' capacities as are spacetime points and their relations. Whatever force
the aprioricity charge has in its spacetime substantivalist formulation carries
over mutatis mutandis to the corresponding charge regarding the posited
cosmic plenum. We conclude that this way of sustaining Leibnizian relationism
(R2) is of no comfort whatever to the radical mathematical constructivist

A more promising approach is the first one considered by Earman. This
begins with explicit statements in authoritative presentations of GTR and
spacetime structure (e.g. Hawking and Ellis [1973]; Wald [1984]) that a
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model (M, g) represents physical reality only up to a diffeomorphic transfor-
mation d of M—that is, that a representation (M, g) and another (M', g') are
physically equivalent if some d is an isometry between them, i.e. d is a bijective
map between M and M' preserving manifold structure and g = d * g, the 'drag-
along' of the metric tensor g. Thus, we should really think of equivalence
classes of mutually isometric models as 'representing space-time reality'; we
work with an individual representative of the class for convenience, but any
isometric model is just as correct. Thus, a direct substantivalist reading of a
presentation of GTR, which construes the elements of a single M as spacetime
points, is resisted from the start. There is an analogy with structuralism in
mathematics: one refers, for example, to a unique domain of natural numbers
with a unique successor relation, etc., defined on it, but this is only a convenient
mode of presentation: really one intends to be describing a mathematical
reality only up to isomorphism.

Realizing relationism, however, involves a further, positive step, Earman
suggests (Earman [1989], Ch. 9, section 9): one should provide a manifold-
independent means of expressing objective spacetime structure. Here one can
have recourse to a method of Geroch [1972] which can be read as realizing a
suggestion of Einstein's, that spacetime, M, 'does not claim an existence of its
own, but only as a structural quality of the [gravitational] field' (Einstein
[1961]). Given a C°° manifold, M, one defines various rings of functions on M
such as CQ(M), the ring of continuous real-valued functions on M, Co(Af), the
subring of bounded continuous functions, and C°°(M), the ring of C°° real-
valued functions on M, and CC(M), the ring of constant functions (isomorphic
to R). Next one shows how to code the various vector and tensor fields needed
to carry out GTR in terms of mappings between these rings and objects
constructed from them. A contravariant vector field, for example, can be
defined as a mapping V from CJiM) to CC(M) satisfying V(Xf + ng) =

+ vV{g) and V(fg) =fV(g) + V(f)g, for/, g €E CJM) and X, M £
) . Covariant tensor fields can then be characterized as multilinear maps

from tuples of contravariant vector fields to CC(M), and so on. Finally, one
'throws away' the manifold M and keeps just the algebraic structure, called an
'Einstein algebra' by Geroch or a 'Leibniz algebra' by Earman. Different
realizations of such an algebra are physically equivalent and can be thought of
as giving different representations of the same physical reality. Spacetime as
an underlying object in its own right has been eliminated, at least in so far as
one views the initial M as merely a heuristic device leading up to the Einstein
or Leibniz algebra.

Now, as it has just been sketched, this approach cannot rescue constructi-
vism from the aprioricity charge for the simple reason that the Leibniz algebra
is based on substantivalist models classically described. That we are dealing
with a plethora of mutually isometric such models—that is, sifting out what is
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common to all of them—rather than a single such cannot help constructivism,
since all of them will share many essentially non-constructive properties;
indeed they will share any property that is determined by differential cum
metrical structure. Consider, for example, the essentially non-constructive
properties crucial to the Hawking singularity theorems noted above, viz. the
compactness of C(p, q), the space of continuous causal curves from p to q, in
globally hyperbolic space-times, which in turn guarantees the existence of length-
maximizing geodesies in C(p,q).12 These are stated with respect to a particular
manifold, of course, but they are preserved under isometric transformations and
so would presumably show up in the more abstract setting of a Leibniz or Einstein
algebra. If anything, this only reinforces the apriorism charge, since it now
emerges that taking certain properties of 'spacetime' as objective, physical
properties does not ultimately depend on taking spacetime itself as a genuine
object. In Einstein's language, what matters is 'a structural quality of the [metric]
field', which can be represented mathematically in many equivalent ways. It does
not thereby lose its physicality and become 'merely a mental construction'.

Where does all this leave the radical mathematical constructivist? Some
options remain, before throwing in the towel. One—a relatively conservative
one—is to try to carry out the Leibnizian strategy just described but with
constructive models of spacetime structure rather than (mathematically) clas-
sical ones. The resulting constructive Leibniz or Einstein algebra would then
be taken as capturing objective physical spacetime properties and relations,
and these would simply not include all the classical ones, such as the existence
of length-maximizing causal geodesies under certain conditions (such as
existence of a Cauchy surface). Assuming this could be done, it may appear
that there is a standoff: the (mathematical) classicist takes a class, C, of
isometrically invariant properties as constituting spacetime structure (without
literally treating spacetime as an object), and the constructivist takes a different
class, C', of isometrically invariant properties—invariance now being under-
stood over a class of constructive spacetimes—as constituting spacetime
structure (also without literally treating spacetime as an object), and it might
seem that it is anyone's guess who is right. The question would then seem to be
an empirical one in a broad sense. But this is really to misconceive the
situation: as already emphasized above, the question is not really whether or

12 Actually, a good deal more work needs to be done to show that properties arising from parts of a
manifold involving variables over spacetime points, such as properties of C(p, q), can be given a
satisfactory, purely algebraic characterization. One must first introduce the notion of a 'curve in
an Einstein algebra'—something that seems doable by composing functions parametrizing
curves with functions in C(M)—and then recover the requisite causal relations, and it is not
completely obvious that a fully algebraic reconstruction is possible. If it is not, then the whole
discussion is shortened at this point, as this route toward realizing Leibnizian relationism (R2)
cannot really succeed anyway. Let us proceed, however, for the sake of argument, on the
assumption that the approach really can be adequately developed to cover causal structural
properties of the sort we are considering.
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not the classicist is empirically or scientifically correct in the classical char-
acterization of actual spacetime structure. It may be admitted that perhaps all
these descriptions are idealizations and not literally true, perhaps not even
approximately true. What matters is that it be a coherent possibility, episte-
mically, that a classical description be correct, and that the physicist be free to
put forward classical models as potentially 'best explanations', among other
things. Yet it is precisely this that the radical constructivist denies in attacking
the intelligibility of the mathematical ideas underlying the classical spacetime
models. The classicist, on the other hand, does not deny the coherence of
constructivist models, but rather regards them as picking out at best only a
proper subset of spacetime structural properties. ('At best' because, on a reading
of applied constructive mathematical statements parallel to that of pure state-
ments reviewed at the outset of this paper, all 'structural properties' would
really bring in reference to what an idealized agent 'can construct', and so
would not even qualify as objective structural properties in the ordinary sense.)
In this crucial respect, there is not a standoff but rather something more like a
breakdown in negotiations. It is not a situation in which each side says to the
other, 'I think my description is better, but it remains possible that yours is', but
rather one in which the classicist says something like this to the constructivist
whereas the constructivist tells the classicist that she is not even formulating
coherent possibilities. Again we are back to the apriorism objection: why
should objective, physical structures be limited to what can be described
within constructivist language or inferred only by rules justified by appeal to
that language? One is of course free to practise pure mathematics within
such confines if one wishes, but to restrict applied mathematics in that way
is still to invite an adjusted version of Hamlet's famous remark to Horatio:
there may well be more things in spacetime than are dreamt of in your applied
mathematics.

The only real way, it seems to me, for the radical constmctivist to get around
the apriorism charge, at least as it pertains to spacetime structure, is to take a
truly radical line and deny the major premise on which that charge is based,
namely that there is such a thing as an objective, mind-independent spacetime
structure that our mathematical physics seeks to describe. So long as this
premise is left intact, some version of the apriorism objection will surface, as
we have just seen in the case of the 'conservative' approach to implementing
Leibnizian relationism (R2). It is insufficient simply to deny the reality of
spacetime points or regions; it is necessary to go further and deny the reality of
objective, physical spacetime structure altogether. But if that is done—if it is
maintained that all mathematical models in this domain are merely convenient
devices for helping us organize our experience and should not be taken
seriously even as non-unique, approximating representations of physical
reality—then at least the way is open to a thoroughgoing constructivist
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treatment of this much applied mathematics without running afoul of the
apriorism charge. If 'physical spacetime structure' altogether, not just any
particular theory of it, is really a myth, or if it is relegated to the status of
absolutely unapproachable noumena, then the objection dissolves.

We need not go further here by enumerating the deep difficulties we find with
anti-realist views of science, nor need we review, from a scientific standpoint,
their error-strewn record, from Berkeley through Mach, Reichenbach, and
beyond.13 It is sufficient for us to draw the conditional conclusion, leaving the
choice of modus ponens versus modus tollens to the reader: the radical
mathematical constructivist, it seems, must indeed also be committed to a
strong form of anti-realism concerning spacetime physics, and, presumably
other branches of science as well. The particular form of anti-realism is not
hereby precisely specified, but its thrust would be comparable to that of radical
empiricism, or of instrumentalism.14 From an experimental or observational (if

13 I am referring, for example, to Berkeley's sophistical arguments turning on equivocation against
the 'mind-independence' of matter, to Mach's embarrassing rejection of the atomic hypothesis
and his account of rotation, and to Reichenbach's continuation of Mach's views based on
misunderstandings of GTR. The latter are enumerated and treated in detail in Earman [1989].
For an example of the sort of trouble a more recent, influential anti-realist approach (that of van
Fraassen [1980]) runs up against in its effort to draw an absolute yet epistemically weighty
dichotomy between the 'observable' and anything beyond (in which rational belief would be
unjustified), see Chihara and Chihara [ 1993]. It should be stressed, however, that van Fraassen's
'constructive empiricism' does not challenge the meaningfulncss of highly theoretical state-
ments—in this it is at least 'non-destructive'—and so is not sufficiently radical for the
Dummettian variety of mathematical constructivism.

14 Some recent efforts to articulate a 'Dummettian anti-realism' concerning scientific theories seek
to improve upon radical empiricism and instrumentalism (e.g. Luntley [1982] and Wright
[1993]). The essential idea is to acknowledge the theory-laden character of 'observation',
indeed to renounce any epistemologically privileged 'observation language' for science, but
to insist, nevertheless, that the concept of truth for scientific statements must be 'epistemically
constrained', leading to indeterminate truth status for many such statements due to the absence
of any available 'decision procedures' for them. Thus, for example, under suitable experimental
conditions involving elaborate apparatus, the existence of subatomic particles can be 'empiri-
cally decided', at least by suitably trained physicists, in agreement with a realist point of view;
nevertheless, to say that the desk on which I am now typing is now composed of such particles is
to venture into the 'indeterminate', since the relevant apparatus for performing the requisite
physical experiments is not in place. Similarly, even ordinary statements about the past, such as
'Ten years ago to this day there were 126 paper clips on my desk', are 'indeterminate' for
similar reasons (such examples are given in Luntley [1982]). While this is clearly not the place
to undertake a thorough examination of such a view, 1 would make two remarks: first, the view
radically severs the presumed links between laboratory and non-laboratory circumstances
crucial to the explanatory force of much of modem science. For example, it makes a mockery
of the whole programme of physics and chemistry to account for macroscopic properties of
matter in terms of microstructure and basic forces. For in the vast majority of circumstances in
which these theories are supposed to apply, the relevant laboratory apparatus for verifying
microstructural claims is not in place, and is not 'available' except in a counxerfaclual sense
itself regarded as indeterminate by this version of anti-realism. Second, the view appears to fly
in the face of the apriorism objection emphasized in this paper, or at any rate a closely analogous
objection: Why should we expect the determinacy of properties of the natural world to turn on
what is 'empirically decidable' by us, however this imprecise phrase is spelled out? In response,
following out the 'truly radical line' to which such a view seems driven, it may be acknowledged
that a result of imposing this standard of determinacy is indeed to renounce the natural world as
it is ordinarily and scientifically conceived.
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not practical) point of view, applied constructive mathematics may be made to
work tolerably well. From a theoretical standpoint, there seem to be serious
limitations arising from the non-constructivity of theorems of deep physical
significance, such as the singularity theorems. But even if alternative versions
of such theorems turn out to be constmctivizable, there remains the theoretical
difficulty emphasized in this paper, that from a realist perspective regarding
physical geometry, there is every reason for leaving open the full range of logical
and mathematical possibilities entertained by the classical mathematician. Any-
thing short of this would constitute an unjustifiable limitation imposed on
applied mathematics, whatever may be one's view of the limitations already
imposed on pure mathematics.
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