Structuralism Without Structures

GEOFFREY HELLMAN*

1. Introduction: Approaches to Structuralism

As with many ‘isms’, ‘structuralism’ is rooted in some intuitive views or
theses which are capable of being explicated and developed in a variety
of distinct and apparently conflicting ways. One such way, the modal-
structuralist approach, was partially articulated in my [1989] (hereinafter
‘MWON"). That account, however, was incomplete in certain important
respects bearing on the overall structuralist enterprise. In particular, it
was left open how to treat generally some of the most important structures
or spaces in mathematics, e.g., metric spaces, topological spaces, differ-
entiable manifolds, and so forth. This may have left the impression that
such structures would have to be conceived as embedded in models of set
theory, whose modal-structural interpretation depends on a rather bold
conjecture, e.g., the logical possibility of full models of the second-order
ZF axioms. Furthermore, the presentation in MWON did not avail itself
of certain technical machinery (developed by Boolos [1985) and Burgess,
Hazen, and Lewis [1991]) which can be used to strengthen the program
substantially. Indeed, these two aspects are closely interrelated; as will
emerge, the machinery can be used to fill in the incompleteness so as to
avoid dependence on models of set theory. The principal aim of this paper
is to take the program forward by elaborating on these developments.

It will be helpful first, however, to remind ourselves of the main intuitive
ideas underlying ‘structuralism’ and to indicate at least roughly where in
the landscape of alternative approaches the one pursued here resides.

One intuitive thesis (one I explicitly highlighted in MWON) is this:

Mathematics is the free exploration of structural possibilities, pursued by

(more or less) rigorous deductive means.

Vague as this is, it already at least suggests the modern view of geometry,
abstract algebra, number systems, and other ‘abstract spaces’, in which we
attempt to characterize the structures of interest by laying down ‘axioms’
understood as ‘defining conditions’, which we may be able to show succeed
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in their role by producing a proof of their categoricity, and then proceeding
to explore their (interesting) consequences. This in turn reveals the impor-
tance of second-order logical notions in mathematical foundations, for, as
is well known, first-order renditions of defining conditions will inevitably
fail to characterize certain of the most central structures in all of mathe-
matics, including the natural-number structure, the reals, the complexes,
and initial segments of the cumulative set-theoretic hierarchy. (Cf. Shapiro
[1991]; also Mayberry [1994].)
A second intuitive principle, traceable to certain ideas of Dedekind [1888]
and widely noted by philosophers and logicians, can be put thus:
In mathematics, it is not particular objects which matter but rather certain
‘structural’ properties and relations, both within and among relevant totalities
(domains).
To this one may wish to add:

The very identity of individual mathematical objects depends on such struc-
tural relations (i.e., on ‘relative positions’ in structures).

This is illustrated by pointing out that it is nonsensical, for example, to pos-
tulate a single real number (as Field [1980], p. 31, entertained; cf. Shapiro
[forthcoming]); to be a real number is to be part of a complete, separable,
ordered continuum. Particular constructions or definitions (e.g., as conver-
gent rational sequences) may, in given contexts, allow one to recover such
structure, and, by focussing on a particular construction, it may appear
that one could sensibly potulate a single such item (say, sequence); but we
can only regard this as postulating a real number after we have recovered
the structure, and so Shapiro’s point stands.

Note that, in stating this second intuitive thesis, we have been inten-
tionally vague about its scope. Is it understood as saying that all math-
ematical reference to objects is to be interpreted structurally (whatever
that means precisely), or does it say, more modestly, that salient cases
are? What of notions such as ‘finite set’ and ‘{inite sequence’ of given ob-
jects? In contrast to numbers, the identity of a finite set of objects A, for
example, seems determined by its members without considering its rela-
tive position within the naturally associated structure, the totality of finite
A-—sets ordered by inclusion, itself a fairly complicated infinitistic object.
(Cf. Parsons's [1990] related points concerning ‘quasi-concrete’ mathemati-
cal objects.) And what of mathematical reference to structures themselves?
Is there a regress involved in interpreting such reference structurally, and, if
s0, is it a vicious one? (Cf. Shapiro [forthcoming).) An adequate structural-
ism should somehow account for these apparent differences among mathe-
matical concepts. As different approaches may be expected to treat such
matters differently, let us take the second thesis in its limited, modest sense,
allowing for supplementation as a particular view may require.
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So understood, there are at least four main approaches to structuralism
that have been proposed and should be distinguished:

(i) The framework of Model Theory (*MT’), carried out in Set Theory
(say, ZFC). Structures are understood as models (sets as domains, together
with distinguished relations and possibly individuals), and one can also
speak of isomorphism types as ‘structures’ (at least one can if one is careful
in either avoiding or admitting proper classes). (Of course, different choices
of set theory yield different explicanda.) Equivalence of nominally distinct
structures can be defined in terms of ‘definitional extension’ and related
notions. (Thus, for example, the full second-order natural-number structure
with just successor distingushed is equivalent to that obtained by adding
addition and multiplication.)

(ii) The framework of Category Theory (‘CT’) (which itself can be ax-
jomatized, as in Mac Lane [1986]). Structures are taken as the ‘objects’ of a
category, treated as simples or ‘points’ by the axioms, and the ‘morphisms’
between the ‘objects’ typically preserve the characteristic ‘structural prop-
erties’ of the branch of mathematics in question. Thus, for example, isome-
tries preserve metric structure, homeomorphisms preserve topological struc-
ture, diffeomorphisms preserve differentiable manifold structure, etc. Cat-
egories themselves can be treated as ‘objects’ in a category, and one can
make sense of morphisms (‘functors’) preserving structural relations among
the maps in the original categories. One even makes sense of morphisms
(‘natural transformations’) of functors, giving rise to a functor category.
(For an overview, see Mac Lane [1986], 386-406. For a categorial recovery
of number theory, see McLarty [1993].)

(iti) Rather than realizing structuralism within an overarching existing
mathematical theory, one may pursue a sui generis approach, taking struc-
tures to be patterns or universals in their own right. (See e.g., Resnik [1981],
Shapiro [1983], [1989], and [forthcoming]; for critical analysis, see Parsons
(1990].) Different conceptions under this heading are possible, depending
on the conception of universals. (See Shapiro [forthcoming).)

(iv) A modal-structural (‘ms’) approach, as in MWON. Here literal quan-
tification over structures and mappings among them is eliminated in favor
of sentences with modal operators. (Hence the term ‘eliminative structural-
ism’, see Parsons [1990], Shapiro {forthcoming]. And hence the title of this
paper, which I owe to Shapiro.) The framework is a modal second-order
logic with a restricted (extensional) comprehension scheme. (For details, see
MWON, Ch. 1.) Categorical axioms of logical possibility of various types
of structures replace ordinary existence axioms of MT or CT, and typi-
cal mathematical theorems are represented as modal universal conditionals
asserting what would necessarily hold in any structure of the appropriate
type that there might be. It turns out that a great deal of ordinary math-
ematics may thus be represented nominalistically, without the language of
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classes at all, even under modality. (See Hellman [1994] and below.) Just
how far this approach can be pushed is a somewhat open question, to be
pursued further below. This brings us to the question already broached at
the outset, whether this approach can do justice to ‘structuralism’ without
a detour through (modal-structurally interpreted) set theory or category
theory. In the following sections, we will present some evidence in favor of
a positive answer.

Now this is not the place to undertake a systematic comparison of these
alternative approaches. There are, however, two related contrasts of im-
mediate concern between (i) through (iii) on the one hand and (iv) on the
other that require our attention. The [irst pertains to the trade-off between
platonist ontology and modality. The first three approaches are framed in
modal-free languages but they are entangled well above the neck (naturally)
in Plato’s beard. Sets, categories, or universals are just taken as part of real-
ity, leading to perennial disputation as to the nature of such ‘things’, how we
can have knowledge of them or refer to them, etc., and (of course) whether
or not such questions are somehow misguided in the first place. Modal
structuralism avoids commitment to such abstracta, at least in its initial
stages (in treating, say, the number systems, prior to reconstructing set the-
ory itself), and raises the prospect that a (modal) nominalistic framework
may suffice to represent the bulk of ordinary mathematics.! (This depends
on treating the second-order variables of the ms language nominalistically,
but in ordinary contexts this can be done (see Hellman [1994] and below).)
The price of course is taking a logical modality as primitive, raising ques-
tions of evidence and epistemic access not unlike those raised by platonist
ontololgies. This trade-off is a subject of ongoing discussion, and will not
be resolved here. We would point out, however, that assessing the trade-off
depends on a better understanding of the alternatives themselves, including
the ms approach. In particular, just what modal-existence postulates are re-

! The phrase ‘ordinary mathematics’ is not a precise one, but we intend it more broadly
than do Friedman-Simpson et al. in the program of reverse mathematics, where explic-
itly excluded are ‘those branches of mathematics which ... make essential use of the
concepts and methods of abstract set theory’, such as ‘abstract functional analysis, gen-
eral topology, or uncountable algebra’. (Brown and Simpson [1986], p. 123.) We do
mean to exclude set theory and category theory themselves, but not the three fields just
listed, nor the theory of non-separable Banach and Hilbert spaces, which by implication
are also excluded by the Friedman-Simpson usage. The latter is motivated primarily
by the question, ‘What portions of ordinary mathematics can be carried out in which
interesting subsystems of classical analysis (PA2)?' and for this purpose, mathematical
questions which cannot even be asked (even via suitable coding) in the language of PA?
are sensibly excluded from ‘ordinary mathematics’. Since we are under no such con-
straint, however, we can aflord to be more liberal, counting as ordinary virtually any
subfield short of those devoted to the grand foundational schemes. In our usage, certain
‘concepts and methods of abstract set theory' can be deployed to some extent without
commitment to abstract sets. But this can be spelled out without a precise use of the
phrase ‘ordinary mathematics’. :
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quired to implement structuralism? The more modest they are, the better
the prospects for the ms approach. The results of our reflections below will
bear directly on this. As will emerge, only rather modest modal-existence
postulates are required; for much of mathematics, only countably many
atoms need be postulated (as logically possible); for much more, includ-
ing a great many topological structures and manifolds, uncountably many
atoms are needed, but this need not transcend the scope of nominalism.

The second contrast between (i)-(iii) and (iv) concerns the wealth of
mathematical structures incorporated within the respective framework. In
the cases of (i)-(iii), the extent of richness is literally endless. While any
particular set theory has its limitations, there are still boundless riches as
regards the structures and spaces of ordinary mathematics. (In particular,
there are no limits on cardinality or on type.) Category theory, especially
with its large categories, is prima facie even more generous. And, presum-
ably, sui generis universals are, as Quine might say, ‘free for the thinking
up’. Not that these frameworks avoid honest toil; nor that they are larce-
nous; they merely rely on the bountifulness of reality as they conceive it.

The case of the ms approach is more complex; indeed, we should distin-
guish two sub-approaches: (a) first develop a modal-structural interpreta-
tion of set theory (or of category theory), and then simply translate the MT
(or CT) treatment of structures of interest accordingly; (b) seek a direct
ms interpretation of theory of any such structures, avoiding set-theoretic
commitments to whatever extent possible. From the perspective of onto-
logy, it is (b) that is of greater interest. Moreover it confronts the challenge
of describing interrelations of different types of structures, something that
both MT and CT are set up to handle. If approach (b) were to be suc-
cessful, structuralism would then stand independently of set theory rather
than being just a chapter in it, even as interpreted; and it would represent
a rather remarkable extension of nominalistic methods. It is this approach
that we shall now continue to pursue.

(Traditionally, the problem with nominalism in mathematics has been
not so much that Occam’s razor has been dulled by Plato’s beard, but
rather that it has managed to remove the beard only by severing the head
at the neck. Modal structuralism, as it has been extended (in my [1994] and
below), manages a fairly clean shave while leaving the brain quite intact.)

2. Extending the Reach of Nominalism to Third-order
Arithmetic and Third-order Analysis

The plan of this section is as follows. First we shall review the modal-
structural frameworks for arithmetic and for real analysis developed in
MWON, taking advantage of certain improvements since developed. These
improvements consist principally in (1) the combined use (due to Burgess,
Hazen, and Lewis [1991], henceforth ‘BHL’) of plural quantification (Boolos
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[1985]) and mereology to define nominalistic ordered pairing in a general
way (as opposed to adopting a new primitive pairing relation, as was sug-
gested in MWON); and (2) the development of predicative foundations
for arithmetic (in Feferman and Hellman [1995]) which enables modal-
structuralism to get started, at least, in a manner compatible with pred-
icativist principles. Having reviewed this, we will then indicate how the
machinery just referred to under (1) can be used to extend the reach of
nominalism one level beyond each of the core systems of arithmetic and
real analysis described in MWON—-essentially how to pass from PA? to PA®
and from RA? to RA®. Some of the benefits of these extensions regarding
structuralism will then be explained in the next section.

Beginning with the standard Peano-Dedekind axioms for the natural
numbers, PA?, involving just successor, /, and the second-order statement of
mathematical induction, we treat an arbitrary sentence S of first- or second-
order arithmetic (in which any function constants have been eliminated by
means of definitions in terms of /) as elliptical for the modal conditional

aVXVf[APA? = S)X('/f),

in which a unary function variable f replaces / throughout and the super-
script X indicates relativization of all quantifiers to the domain X. This is
a direct, modal, second-order statement to the effect that ‘S holds in any
model of PA? there might be'. (Note that use of model-theoretic satisfaction
is avoided.) This was called the ‘hypothetical component’ of the modal-
structural interpretation (msi) of arithmetic. In order that this provide a
faithful representation of classical arithmetic, it is also necessary to add a
‘categorical component’, a statement that such structures (w-sequences or
N-structures) are logically possible:

o AXIFAPA%X(/f). (Poss N)

This is the characteristic nodal-existence (mathematical existence) claim
underlying classical arithmetic (or ‘classical analysis’, logicians’ term for
PA?%). It distnguishes the modal-structural approach from ‘deductivism’
and from ‘if-thenism’. All sentences of the original mathematical language
(for PA?) are regarded as truth-determinate regardless of their formal prov-
ability or refutability. Furthermore, various arguments show that the trans-
lation scheme respects classical truth-values. A key step is the recovery of
Dedekind’s categoricity proof, that any pair of models of PA? are isomor-
phic. This can be carried out within modal second-order logic, using just
the ordinary second-order (extensional) comprehension scheme (with ordi-
nary universal quantifiers in the prefix, not boxed ones) and basic quantified
modal logic (although S-5 is the preferred background). Here the reasoning
is straightforward mathematical reasoning under the assumption that a pair




106 HELLMAN

of PA? structures is given. Appeal to intensions—relations across possible
worlds, as it were-—can be avoided if we assume an ‘accumulation principle’
to the effect that if it is possible there is an w-sequence with (PA2-definable)
property P (which, by quantifier relativization, involves only items internal
to the given sequence) and it is possible there is another w-sequence with
such property @ (internal to its sequence), then the conjunction of these
existential statements is also possible, i.e., these two sorts of w-sequences
occur in the same world, so to speak. (For further details, see MWON,
Ch. 1; also Hellman [1990].)

Note that talk of ‘possible worlds’ is heuristic only; the modal operators
are primitive in the framework and are not required to be given a set-
theoretical semantics. Note further that the accumulation principle derives
its plausibility from the combination of two considerations: first, it is only
logical possibility that is at issue, and second, the mathematical properties
labelled ‘P’ and ‘Q’ are entirely ‘internal’ to their respective sequences, as
relativization to the respective domains of any quantifiers they may contain
insures. The essential point is that anything internal to a given structure
cannot conflict with anything internal to another, so that structures sa-
tisfying the respective conditions are logically compossible. Thus, there is
no requirement that the structures involved be of the same general type.
One could be an w-sequence and another could be an ordered continuum,
or whatever. Moreover, the principle can be generalized in the obvious
way to cover any finite number of structures. These generalizations are
important for this approach to structuralism, since, as in set theory or
category theory, we often wish to speak of relations among a variety of
structures. Finally, note that the formulas above quantify over structures
by quantifying directly over their domains and distinguished relations or
functions; it is not necessary to ascend a further level in type as is commonly
done in model theory. From the rest of the formula, it can always be made
clear which relations or functions are defined on which domains.

So far we have used some of the ordinary language of mathematics—the
language of ‘domains’ and ‘functions’—to eliminate reference to ‘numbers’
as special objects. Arithmetic is not about special objects; it is rather
about a special type of structure. In accordance with part of Dedekind’s
conception, it investigates facts which hold of any ‘simply infinite system’,
but we have explicitly used modal operators both to get away from commit-
ments to any special instantiation of the structure-type and to achieve an
open-ended generality appropriate to mathematics.? On this conception,

2 As Tait [1986) and Parsons {1990] have pointed out, it would be a mistake to attribute
to Dedekind himself an eliminativist structuralist position (cf. MWON, Ch. 1). In the
text, however, we are referring to Dedekind’s conception of ‘the science of arithmetic’ as
investigating what holds in any simply infinite system. This, surely, is the starting point
of any eliminativist approach. '
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mathematics investigates a certain category of necessary truths, not con-
fined to what happens to exist. But it does not have to postulate a special
realm of necessary existents in the process. Only one level of abstracta has
been invoked, corresponding to the second-order variables. And, it should
be noted, the second-order comprehension scheme does prima facie commit
us to actual classes and relations of whatever actual first-order objects we
recognize among the relata of the relations (or relation variables) of our
language. Significantly, there is no iteration of collecting, so this is not
Plato’s full beard, to be sure; but it does seem more than just a six o’clock
shadow! So how do we get a clean shave?

Well, it turns out, there are many ways to shave a beard, at least at the
stage of second-order arithmetic. One way is that of predicative founda-
tions, in the tradition of Poincaré, Weyl, and Feferman et al. The central
idea here is to restrict comprehension axioms to definable classes (and re-
lations), where this is spelled out in terms of formulas of mathematical
language whose quantifiers range over already defined or specified objects.
(For details on various options, including systems of variable type, see writ-
ings of Feferman, e.g., {1964}, [1968], [1977], [1988].) Typically one begins
by taking the natural numbers for granted and considering, first, those sets
of natural numbers definable by arithmetic formulas (with quantifiers only
over natural numbers)—the first-order sets—and then sets of natural num-
bers definable by formulas with quantifiers over numbers and first-order
sets, and so on. (How far this may be iterated is a delicate matter.) This
can qualify as nominalistic—relative to the natural numbers—in that one
can eliminate reference to sets and relations in favor of the semantic notion
of satisfaction of formulas by natural numbers, or by other nominalistically
acceptable objects, e.g., predicates themselves. (Cf., e.g., Chihara [1973],
Burgess [1983].)

The problem with this as a nominalization program, however, is that
the natural-number structure has been taken as given. And this has ap-
peared unavoidable, for there is prima facie reliance on impredicative class
existence principles in the classical constructions of the natural-number
structure, e.g., the Dedekind-Frege-Russell definition as (essentially) the
intersection of all inductive classes containing 1 (or 0). Such principles
are standardly used also to prove the existence of an isomorphism between
any structures satisfying the PA? axioms; and it is well known that the
second-order statement of induction is necessary for this result. Contrary
to these appearances, however, the natural-number structure can itself be
constructed predicatively, beginning with the notion of finite set governed
by axioms that are intuitively evident or of a stipulative character, as car-
ried out by Feferman and Hellman [1995]. Of particular interest here are
the facts that mathematical induction is itself derivable from within an ele-
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mentary theory of finite sets and classes (‘EFSC’),? and that Dedekind’s
categoricity proof (‘unicity of the natural number structure’) is also recov-
erable. (Cf. Feferman-Hellman [1995].)

This still leaves us with the non-nominalist notion of ‘finite set’ governed
by the EFSC axioms. But even this vestige of platonist commitment (5
o'clock shadow?) can be eliminated. One can first postulate the logical
possibility of an infinitude of atoms (atomic individuals, governed by the
axioms of atomic mereology; cf. Goodman [1977], also MWON, Ch. 1), and
then interpret ‘finite set’ as ‘finite sum (or whole, or fusion) of atoms’. To
express ‘infinitude of atoms’ one can use the device of plural quantification
and postulate:

‘There are (possibly) some individuals one of which is an atom and each
one of which fused with a unique atom not overlapping that individual
is also one of them.’ (Ax o0)

With this postulate, one has the essentials of a mereological model of the
EFSC axioms: first-order variables can be taken to range over arbitrary in-
dividuals (atoms and fusions of atoms); finite set variables range over finite
fusions of atoms; class variables range over arbitrary fusions of atoms. If
a null individual is admitted (as a convenience), the axioms are satisfied
as they stand; otherwise the comprehension axioms can be complicated
slightly to avoid the null individual. (EFSC also takes a pairing function as
primitive, governed by two axioms: P-I, the standard identity condition,
(z,y) = (u,v) iff z = v and y = v, and P-II, existence of an urelement un-
der pairing. It turns out that both these are satisfied on, say, the Burgess
construction of nominalistic pairing in BHL [1990]. So we can invoke this
in interpreting pairing in EFSC.) Now, within such a model of EFSC there
is a mereological model of the PA? axioms. (This follows from the con-

3 The system EFSC is formulated in a three-sorted language with individual variables,
variables for finite sets of individuals, and variables for classes of individuals. Formulas
with no bound class variables are called ‘WS’ formulas (for ‘weak second-order’). A pair-
ing operation-symbol is primitive as is € relating individuals to finite sets and classes.
The logic is classical (with equality in the first sort). The axioms of EFSC are, in words,
as follows:
(WS-CA)  Weak second-order comprehension: existence of classes as extensions of
WS-formulas;

(Sep) Separation for finite sets: existence of a finite set as the intersection of any
given finite set and the extension of a WS formula;

(Empty) Existence of the empty finite set;

(Adjuction) Existence of a finite set obtained by adjoining any single individal to a given
finite set;

(Pairing 1) ‘Pairs are distinct just in a case either first or second members are’;

(Pairing II) Existence of urelements under pairing.

The system EFSC* is obtained from EFSC by adding the axiom,

(Card) ‘Any finite set is Dedekind-finite.’

In Feferman-Hellman [1995], the existence of structures satisfying mathematical in-
duction is derived in EFSC*; however, as Peter Aczel has pointed out, this can already
be proved in EFSC.
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struction of an N-structure in EFSC.) Moreover, as the class variables are
taken to range over arbitrary individuals (fusions of atoms), we even have
a full second-order PA%? model in the classical sense, in which arbitrary
sets of numbers correspond to arbitrary fusions of the individuals serving
as numbers. The predicativist may stop short of this, confining oneself to
‘definable fusions’ of atoms in specifying the range of the class variables.
(Cf. Hellman [1994], sec. 3.) But the essential point here is that both pred-
icativist and full second-order arithmetic are interpreted nominalistically.

From here, one could continue on with predicativist analysis, construct-
ing countable analogues of the classical continuum, made up of ‘definable’
or ‘specifiable’ reals, which support rather rich portions of functional anal-
ysis and related subjects. (Cf., e.g., Feferman [1988].) As Feferman has
pointed out, within various systems of predicative analysis, one can even
prove the unicity of the real number structure, as seen from within that sys-
tem: impredicativity is avoided because one requires, not the full classical
principle of Continuity (least upper bound axiom), but only the sequen-
tial form, ‘Every non-empty bounded sequence of reals has a least upper
bound’. (For details, see Hellman [1994], sec. 2.)

Continuing along the predicativist route, one can introduce symbollsm
for reasoning about (specifiable) classes (and relations and functions) of
reals, classes (etc.) of classes of reals, and so on through the finite types.
(See, e.g., Feferman's system W [1988] and [1992].) At each level, one is
considering not the full classical totalities, of ever higher uncountable cardi-
nality, but subtotalities of objects predicatively specifiable in mathematical
language.? Thus, the ranges of the quantifiers at each level are really count-
able, although from within the predicativist system they may be described
as ‘uncountable’. (The predicativist can carry out the reasoning of Can-
tor’s diagonal argument, but, implicitly, only specifiable enumerations are
considered.)

To what extent can predicativism carry out a structuralist program for
mathematics? This is a large question which cannot be fully answered here.
But the following points towards an answer may be offered. First, one must
be more precise about what it means to ‘carry out a structuralist program’.
Presumably this includes these things: (i) characterizing the types of struc-
tures or spaces that arise in the various branches of mathematics (or at least
‘ordinary mathematics’ as we have used that term above); (ii) describing
the main types of relationships among these structures, including the var-
jous morphisms within and among them (isomorphisms, homomorphisms,
embeddings of various sorts, etc.); (iii) recovering the important theorems
concerning the various structures and relations among them, including ex-
istence theorems.

4 For ways of making this precise in connection with unramified systems such as W,
see my [1994], n. 2.

s
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Judged by these standards, predicativism gets mixed reviews. It does
surprisingly well, for example, in recovering theories of various types of met-
ric spaces central to scientifically applicable mathematics. Although the
concept of Lebesgue outer measure is not predicatively available, theories
of measurable sets and measurable functions can be developed (cf. Fefer-
man {1977, §3.2.5), and then one can obtain the L, spaces and carry out a
structuralist treatment of Banach and Hilbert spaces. On the other hand,
clearly there are important limitations: 1) Various objects of importance
in the classical (set-theoretic) treatments are simply not available, e.g.,
outer measures, as just indicated, and general descriptions of major types
of spaces are prima facie impredicative, e.g., topological spaces with fami-
lies of open sets closed under arbitrary unions. 2) Proofs of key theorems,
even if predicatively statable, may require impredicative constructions es-
sentially. A known example is Friedman’s finite form of Kruskal’s theorem
on embeddability of finite trees. (See e.g., Smorynksi [1982].) Even if this
example does not pertain to scientifically applicable mathematics, it surely
pertains to significant mathematical structures. 3) Even in the cases in
which predicative proofs of key theorems are possible, e.g., the unicity of
the real-number structure, in reality we know—as does the predicativist—
that the structures to which the result pertains are countable, hence only
small parts of the structures classically conceived. Even if the predica-
tivist makes no direct sense of the latter phrase, one can pass to more
encompassing, predicatively graspable totalities, essentially by enriching a
given language with predicatively intelligible semantic machinery for defin-
ing new objects, e.g., real numbers. (Cf. Hellman [1994], §2.) If one is
a skeptic about uncountable totalities generally, then presumably one is
willing to pay the price of this language-relativity of much of mathematics.
If, however, one follows the classicist in taking seriously the absoluteness
of uncountability—e.g., if one treats totalities such as ‘all sets of natural
numbers’ or ‘all fusions of countably many atoms' as having a definite and
maximal sense—then one will regard the predicativist substitutes as falling
far short of the genuine articles.

This much should be clear: If the objection to the uncountable is moti-
vated by nominalist concerns—the desire to avoid commitment to classes
or universals, etc.—then it is misplaced. A fusion of atoms is just as
‘concrete’—just as much not a class or a universal, etc.—as the atoms them-
selves. In the language of types, both are of type 0. It does not matter
how many there are. If we are given countably infinitely many atoms—
by definition pairwise discrete—then we may speak of arbitrary fusions of
them without nominalistic qualms. Then to go on to say how many of such
fusions there are requires further reasoning, to be sure; but in fact there
is no problem in carrying out Cantor’s diagonal argument nominalistically
to convince oneself that there are uncountably many. And if in the course
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of this reasoning, one meant to consider ‘any possible enumeration’-—not
merely any that could be specified in some privileged symbolism as the
predicativist intends—then the conclusion has its absolute force.

This leads us to relax the ‘definitionist’ stance of predicativism in pursuit
of a nominalist structuralism. In our nominalist I-comprehension scheme,

JzP(x) - JuVylyou o I2(P(2) & z0y)] (cy)

(in which o is ‘overlaps’ or ‘contains a common part with'), we allow the
predicate ® (lacking free u) to contain quantifiers over arbitrary individuals,
whether or not specifiable by any particular symbolic means. An immedi-
ate consequence is that, once we have postulated (Ax oo)—gunaranteeing
an w-sequence of atoms (Poss N)—we already have embedded within such
a sequence enough subsequences to serve as arbitrary real numbers. Stan-
dard arithmetization procedures can be used to introduce negative inte-
gers, rationals, and then reals (either as Cauchy sequences of rationals or
as Dedekind cuts). (By the device of numerical pairing, that is pairing via
the atoms of the postulated w-sequence, one can remain within that struc-
ture; reals are then just certain fusions of atoms.) The following important
facts should be noted:

(1) The full classical Continuity principle (lub principle for arbitrary
nonempty bounded sets of reals) is derivable along logicist lines (using CX),
without exceeding the bounds of nominalism. (The usual set-theoretical
arguments are avialable making use of plural quantifiers to get the effect of
quantification over sets and functions of reals.)

(2) The categoricity of real analysis (RA) is also derivable within this
nominalist framework, in the sense that any two concrete R-structures (i.e.,
with reals built up from concrete w-sequences in logicist fashion as just al-
luded to, together with the usual ordering < on reals) are isomorphic. (The
proof of this requires even less than (1), viz. Sequential Completeness rather
than the full lub principle suffices. For a visualizable nominalistic construc-
tion, see Hellman [1994].) Furthermore, since all fusions of atoms count as
individuals, regardless of specifiability by formulas, this categoricity proof
has the absolute significance of the standard set-theoretical one.

Thus, (Poss N}—hence (Ax oo)—suffices for a nominalist structuralist
treatment of full classical analysis (PA?). In particular, the criteria (i)-(iii)
above are met with respect to PAZ-structures. But, as the alert reader may
have noticed, we have enough machinery at our disposal to ascend one more
level, to third-order number theory (PA®). Plural quantifiers achieve the
effect of quantification over sets of reals, as just described; and the device
of BHL pairing reduces polyadic quantification at this level (over relations
of reals) to monadic. Still we have only had to hypothesize a countable
infinity of atoms.
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There may be the concern that plural quantifiers (at a given level, say
pluralities of reals) do not really get around classes (of reals); that a sentence
such as, ‘Any reals that are all less than or equal to some real are all less
than or equal to a least such’, really concerns classes of reals as values
of a hidden variable. (No first-order couditions determine the same class
of models.) I agree with Boolos [1985] and others, however, that we do
have an independent grasp of plural quantifiers and their accompanying
constructions, and that we can use them to formulate many truths at any
given level that would have to be regarded as false on an ontology that
repudiates classes of objects at that level. (The case based on this and
related points has been made very effectively by David Lewis in his {1991],
£3.2.) The school teacher who says, ‘I've got some boys in my class who
congregate only with each other’, should not be ascribed on that basis a
commitment to classes other than school classes. The EPA official who says,
‘Some cars are tied with one another in being the most polluting vehicles on
the road’, need not be committed to classes of vehicles other than the usual
predicative ones (two-door sedan, station wagon, etc.). And the nominalist
who entertains just some atoms and their fusions can even go on to say
things like, ‘Some of those fusions can be matched up in a one-one manner
with the atoms whereas not all of them can’, without implying anything
about any objects of higher type than the fusions themselves. (In virtue of
BHL pairing, even the talk of one-one correspondences is innocent.)

Thus the strength of full, classical third-order number theory—equiva-
lently, second-order real analysis—is attained within a nominalist modal-
structural system without postulating more than a countable infinity of
atoms. This is already quite a rich framework for carrying out structural-
ism. But if we are prepared to entertain at least the logical possibility of a
continuum of atoms, we can attain one full level more, that of fourth-order
number theory, equivalently third-order real analysis. Suppose we postulate
the possibility of a complete, separable ordered continuum (‘R-structure’,
for short) of atoms, which we may write

oAX3fANRA%X (< /f), (Poss R)

in which RA? denotes the axioms for such a structure (with first-order quan-
tifiers stipulated to range over atoms), including the second-order statement
of Continuity, and where a relation variable f replaces the ordering rela-
tion constant < throughout; then our second-order variables already range
over arbitrary fusions of these, at the level of sets of reals. Functions and
relations of reals are reducible to sets via pairing. Quantifying plurally over
sets of reals then gives the effect of quantifying (singularly) over sets of sets
of reals and, via BHL pairing, over functions and relations of sets of reals
(hence also of functions and relations of reals). This is mathematically at
the level of RA? or PA*, a very rich framework indeed. (Note that, since
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fusions of (atoms serving as) reals are entertained as bona fide objects, it is
pluralities of them that we plurally quantify over to achieve the next level.
Even if plural quantification is already invoked lower down, to introduce
pairs, triples, etc. of reals so as to reduce relations of reals to sets, we get
the effect of plurally quantifying over relations of reals when we pluraily
quantify over sets of reals. We are not ‘plurally quantifying over pluralities’
except in this innocent sense.)

In order to characterize R-structures, it is necessary that we use the
second-order statement of the Continuity principle (lub axiom); it is one of
the defining conditions built into the modal-existence postulate (Poss R).
Does this mean that we have given up the advantages of a logicist-style
derivation of Continuity from more elementary, general principles? Well,
yes—but also no! Yes, in that the principle (or a geometric equivalent)
is essential in asserting the possibility of an R-structure whose first-order
objects are atoms. But no, in that we have already derived Continuity in
logicist fashion (but nominalistically) above as it governs R-structures built
from fusions of atoms of an N-structure. If reals are taken as constructed
objects (e.g., Dedekind sections, etc.), then we already have (Poss R) based
on (Poss N}, as already described. (This point was not made in MWON, for,
not utilizing the resources of plural quantifiers, we did not have the means
to state Continuity in full generality, nominalistically, given just (Poss N).
A major advantage of the present approach is that, now, we do have the
means to speak of arbitrary pluralities of reals, given just (Poss N).) We
give none of this up when we add the postulate of an atomic R-structure.
But of course we are adding something substantial. In terms of the familiar
aphorism, there are two cakes: we are having one while eating the other.

Now the worry arises that in entertaining anything so idealized and
remote from experience as spatio-temporal or geometric points (typically
thought of as realizing the RA axioms) we have exceeded the bounds of nom-
inalism. Surely a case can be made that ‘points of space-time'—especially
‘unoccupied points’—are in some sense ‘abstract’, even if invoked by stan-
dard formulations of physical theory. Field {1980], who based his nomi-
nalization program on the acceptability of space-time points and regions,
sought to answer such objections, in part by appealing to substantivalist
interpretations of space-time physics which do seem to accord a kind of
causal role to (even unoccupied) space-time (e.g., as a field source with
clearly physical effects). And certainly this neo-Newtonian perspective is
not without its adherents. But it is important to realize that the modal-
structural axiom, (Poss R), does not ultimately depend on a substantivalist
view of space-time. For, just as the logical modality frees us from having to
posit actual countable infinities, so it frees us from any particular view of
actual space, time, or space-time. It suffices, for example, that Newtonians
who posited a continuous luminiferous medium were entertaining a logically
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coherent possibility. Similarly one can coherently imagine a perfect fluid
filling, say, a bounded open region and satisfying whatever causal condi-
tions one likes. All that matters is that it be conceived as made up of parts
satisfying the RA? axioms; it need not involve ‘unoccupied space’; it need
not be useful to any explanatory purpose; it need not be (period). Fur-
thermore, supposing that such possibilities are ‘world-independent’—that
they have the absolute status generally accorded logical possibilities—frees
mathematics based on (Poss R) of any contingency. (In the modal system
S-5, appropriate to logical possibility, we have Nec Poss R once we have Poss
R.) There is no ‘lucky accident’ involved in the truth of modal-structuralist
mathematics.

Since the comparison with Field’s program has come up, it is appropri-
ate to emphasize that, for Field also, there is no ‘lucky accident’ involved in
the truth of mathematics, for (except in a vacuous sense) Field’s program
is instrumentalist, not recognizing mathematical truth at all, except in vac-
uously assigning ‘false’ to all existential statements and ‘true’ to anything
equivalent to the negation of one, since ‘there are no numbers’! This is
as great a contrast with modal-structuralism—nominalist or not—as there
could be.

Yet perhaps the contrast is at bottom illusory. For, in seeking to recover
nominalistically various arguments that certain mathematical-physical the-
ories are semantically conservative with respect to their nominalized coun-
terparts, Field [1989] [1992] introduced logical modality as a means of by-
passing reference to models. Along the way he seems committed to affirming
such things we would write as,

oAPA?, (FC)

that the conjunction of the second-order Peano-Dedekind axioms is logically
possible. (‘FC’ is for ‘Field’s commitment’.) Now this is not quite the same
as our (Poss N), which involves domain and function variables, but (Poss
N) follows in second-order logic from (FC). Mathematically speaking, they
are not essentially different. (Philosophically they are. As explained in
MWON, Ch. 1, problems arise in interpreting the function constant of (FC)
under the modal operator, problems that (Poss N) avoids. And explicit
reference to domains is natural in a structuralist interpretation.) But then
everything needed for a modal-structuralist treatment of mathematics in
PA% —or even PA®, if plural quantifiers are added—is available. So Field’s
system i3 not really instrumentalist after all. 1t embraces the core of the
ms interpretation but then does not go on to utilize it. In this sense, much
genuine mathematics is still present.>

5 Concerning Field’s commitment (FC), let ‘Az’ stand for the conjunction of axioms
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3. Realizing Structuralism

Without attempting anything like a survey of mathematical structures, let
us indicate by salient examples how the above described frameworks suffice
for a great deal of the structuralist enterprise. Let us refer to those frame-
works as PA® (or RA?) and PA* (or RA3), understanding of course that it
is the nominalistic modal-structural version of these systems that is meant,
that is, the relevant modal-existence postulate, e.g., (Ax oo), with the back-
ground of S-5 modal logic, mereology with the comprehension scheme (CL)
for modal-free formulas, plural quantifiers, and the assumptions needed for
BHL pairing (as in the Appendix of Lewis [1991}). (The second-order logical
notation of the modal-existence postulates may be retained, understanding
the monadic second-order variables to range over arbitrary fusions of atoms
and polyadic second-order variables to range over fusions of n-tuples of in-
dividuals based; say, on b-pairing of BHL.) It should also be understood
that, in treating many abstract structures, what we really require of these
frameworks is not the full structure of an N-structure or an R-structure,
but merely a domain with sufficiently many atoms, e.g., a countable infin-
ity or continuum many. Then one needs the specific functions, relations, or
other items characteristic of the type of abstract structure in question, e.g.,
a metric, a topology, a chart-system, etc. Thus when we appeal to PA? (or
PA3®), say, we may only be appealing to the modal-existence of a countable
infinity of atoms; and when we appeal to RA% (or RA3), we may only be
appealing to the modal-existence of continuum-many atoms. Alternatively,
we may only wish to appeal to the modal-existence of uncountably many
atoms, leaving open the cardinality. It should be clear how to formulate
this using the available machinery, mereology, plural quantifiers, and BHL
pairing. We need merely translate the statement,

o3X['X is a fusion of infinitely many atoms & a proper part Y of X is

of a finitely axiomatized mathematical theory T (such as PA?), and let S be a nominal-
istically formulated statement (of applied mathematics); then Field's modal formulation
of the conservativeness of T is

If 0S5, then o (Az & S), (Conserv T)
where Field's ¢ operator is said to mean ‘it is not logically false that'. (Cf. Field [1992],
p. 112.) Initially, Field focuses on first-order theories (for which (Conserv T') may be
a schema with finite conjunctions of axioms), but later he considers some second-order
cases as ‘not compietely without appeal’. Moreover, since the ‘complete logic of Good-
manian sums’ is invoked (in Field [1980]) in connection with representation theorems
for R*—i.e., even arbitrary fusions of space-time points are recognized—there should
certainly be no objection to (Conserv PA?). (Indeed, as we have seen, Az in this case is
nominalistically interpretable without anything so strong as space-time substantivalism.
Field's reservations in connection with second-order principles seem to have primarily to
do with transfinite set theory and not with arithmetic or analysis. Cf. his [1992}, p. 119.)
But of course there are some S such that Field accepts oS, and then oAz follows.

It may well be that Field’s informal understanding of the logical modality differs in
some respects from that expressed in MWON, but his core modal logic, like that of
MWON, is a version of S-5, and it seems clear that a great deal of modal mathematics
(of PA? and even RAZ2) can be carried out within Field’s system.
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a fusion of countably many atoms (which we can say directly by saying
Y is in one-one correspondence with any infinite part of Y) & X is not
in one-one correspondence with Y’].

If we wished to specify a fusion of R; atoms, we could simply add to this
that X is in one-one correspondence with any infinite part which is not in
one-one correspondence with Y. Similarly we could specify a fusion of R,
atoms, and so on. (Writing such things out in primitive notation with all
the plural quantifiers needed for BHL pairing would not be pleasant, but
that is why we like quotes. For more on the expressibility of cardinality,
see Shapiro [1991].)

Let us begin with the important example of metric spaces. Abstractly
considered, these are pairs consisting of a domain X and a function d (pos-
itive definite metric) from X x X into R satisfying the familiar first-order
conditions: d(z,z) = 0, z # y — d(z,y) > 0, d(z,y) = d(y,z), and
d(zx,y) + d(y, 2) > d(z, z) (triangle inequality). Bijective mappings ¢ be-
tween two such spaces, (X, d) and (X', d’), preserving metrical relations are
called isometries. (That is, d(z,y) = d'(¢(z), ¢(y).) Even if we require that
the domains be uncountable, all this is describable at the level of PA3: the
domains are at the level of sets of reals, metrics are at the level of sets of
ordered triples of reals, hence sets of reals via pairing, and isometries are at
the level of sets of ordered pairs of reals, hence sets of reals. Thus we can
quantify over structures of this type and isometries (and similar relations)
among them without positing more than a countable infinity of atoms.

Of course, many metric spaces of importance carry additional structure,
often embedded in the elements of the spaces themselves. For example,
Banach spaces are normed linear spaces whose elements are often real- or
complex-valued functions; they become metric spaces under the definition
d(f,g) = ||f — g||. Hilbert spaces have the additional structure of an in-
ner product, ( , ), which gives rise to a norm via I1£II2 = (f, f). Such
spaces are called separable if they include a countable dense set of vectors
(where density means that any f in the space can be approximated ar-
bitrarily closely in the metric by elements of the countable subset). The
vectors of a separable Hilbert space are codable as real numbers, and inner
products are then at the level of sets of reals (via pairing). Linear oper-
ators are also at this level, as are subspaces. The latter, however, can be
coded as reals since a subspace is spanned by countably many vectors. The
same is true for a great many operators, e.g., the continuous (= bounded)
ones. Norm-preserving maps, unitary transformations, are also at the level
of sets of reals. Thus, the metrical structure of separable Hilbert spaces
is describable in the PA® framework, again not exceeding the postulation
of countably many atoms.® Significantly, the classical demonstration that

6 Indeed, if the vectors of the dense set are codable as natural numbers, as they are
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the axioms for separable Hilbert spaces (of infinite dimension) are cate-
gorical carries over intact. (The standard examples €2 and L? are avail-
able.) Indeed, even measure-theoretic structure can be captured at this
level. Note, finally, that—in virtue of the unrestricted second-order (exten-
sional) comprehension principles of our background logic—theorems of the
standard classical theories of these structures translate into theorems of the
modal-structuralist framework, as in the cases of arithmetic and analysis.
(Cf. MWON, Ch. 1.) This preservation of theorems holds regarding all the
structures we shall consider, so we need not keep repeating the point.

For some theorems involving multiple structures, instances of accumula-
tion principles, described above, may be used. It should be mentioned, how-
ever, that in many cases, appeal to such principles can be bypassed and one
can reproduce constructions and theorems regarding multiple structures—
indeed even infinite classes of structures—by considering certain parts of a
single possible universe of infinitely many atoms, each such part endowed
with relevant mathematical structure. The example of product spaces in
topology is a good illustration and will be described briefly below. (Whether
the class of structures can be uncountably infinite depends on the case.)

Let us consider now some structures from measure theory, which has
posed a challenge to various constructive programs. (We follow Halmos
[1974].) Central are measure spaces, triples (X, S, u) where X is a domain
of points (e.g., real numbers), S is a class of (measurable) subsets of X (a
o-ring) whose union is X, and u is an extended real-valued, non-negative,
countably additive set function on S assigning 0 to the empty set. Now, if
S is the o-ring generated by a collection of cardinality of R (e.g., S is the
collection of Borel sets of reals, generated by the bounded left semi-closed
intervals), it has cardinality of R also. Then the members of S can be coded
as reals so that p is of the type of a function from R to R, at the level of
PA3?, and so within the framework of ms arithmetic.

Beyond this, however, one quickly encounters measure-theoretic struc-
tures that require resources beyond PA%. Let X be the real line, R!, S the
class of Borel sets, and u Lebesgue measure on S. Let S be the result of
adding to S all sets of the form EU N where E € S and N is a subset
of a member of S of measure 0, and let & be the completion of & on §
(B(E A N) = u(E), E and N as just described, where A is symmetric
difference). f is the complete Lebesgue measure, and the sets of S are
the Lebesgue measurable sets. Now, since there are uncountable (Borel)
sets of (u) measure 0 (of cardinality of the continuum, in fact, by Cantor’s

in standard examples such as the €P spaces, then the metrical structure of the separable
Hilbert space is decribable in PA2, and indeed much of the theory can be developed in
very weak subsystems. (See Brown and Simpson [1986].) However, the completion of
the countable dense substructure does not formally exist in PA?; a general structuralist
treatment naturally will distinguish the uncountable completions from their countable
codes, and this requires ascent past PAZ.
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middle third construction), and since £ € S, u(E) =0, & F C E together
imply F € §, the cardinality of § must be that of the power set of R (by
Cantor’s cardinality theorem). (Cf. Halmos [1974], p. 65 (5), (6).) Thus
S and | are essentially at the level of classes of sets of reals, i.e., at RAS,
one step beyond PA3. But RA® suffices; this structure is describable within
(nominalistic) ms analysis, and its modal-existence assured.

Similar remarks apply to the theory of outer measure. The rele-
vant structures are extensions of a measure space, (X,S,u), of the form
(X, H(S),p*), where H(S), the hereditary o-ring generated by S, is the
smallest o-ring containing the sets of § and closed with respect to (arbi-
trary) subsets of such sets, and p* is the outer measure defined on H(S)
by

p*(E) =inf{u(F): EC FeS}

Here again both the class of (outer) measurable sets and the (outer) measure
are at the level of classes of sets of reals, hence at RA® (PA*'). Once
again, the resources of this framework are needed but suffice for this type
of structures.

Turning now briefly to topological spaces, the story is similar. In gen-
eral, these are structures of the form (X,0), where X is a set and O is a
class of open subsets of X such that O contains the empty set and X and
is closed under finite intersections and arbitrary unions. This leaves open
a vast array of possibilities. At one extreme, the trivial topology contains
just the empty set and X, and at the other extreme the discrete topology
contains every subset of X. In between lie the most familiar topologies of
the real line, the plane, etc. (the usual topologies of R™), which are separa-
ble, i.e., have a countable base (e.g., the open n-spheres of rational radii).
This means that for every point z in an open set U there is a basic open
set B such that x € B € U. Thus, every open set in such a topology can
be represented as a countable union of basic open sets. In the case of R",
this means that every open set can be represented by a real number, so
that O itself can be represented as a set of reals. Thus, such topological
spaces can be described in PA3, modal-structural arithmetic. (Similarly for
the various spaces encountered in point-set topology.) However, this repre-
sentation relies on metrical information which is generally not avajlable. A
long story here can be shortened considerably by noting that the discrete
topology (on X) is a worst case, concerning cardinality (which is the chief
guide in determining type level). Thus if X has cardinality of the conti-
nuum, any topology on X has cardinality no greater than the power set of
the continuum, i.e., @ is at or below the level of a class of sets of reals, at
RA3. And morphisms between such spaces (especially homeomorphisms)
are generally capturable at RA?. Thus, a very rich variety of topological
spaces is certainly describable within the nominalist ms framework. Even
if higher set theory (even Morse-Kelley) is needed for a completely general
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theory of topological spaces (free of any cardinality restrictions whatever),
clearly a great deal of the subject can be developed on the basis of our two
modal-existence postulates above, that is without officially countenancing
sets or classes at all. (Note here that the predicativist alternative does not
extend nearly so far, as the very notion of closure of a topology under arbi-
trary unions is not available. This serves further to highlight the contrast
between nominalism and even liberal varieties of constructivism.)

Let us end this cursory tour by mentioning three examples of topological
spaces of some complexity, as well as importance, that can be treated within
our framework. One example is that of n-dimensional manifolds, of great
importance in space-time physics. As was already described in MWON,
Ch. 3, the general theory of such structures does exceed the reach of RA?,
but only by one level. The effect of adding plural quantifiers is that we
now have RA® at our disposal, and this does suffice to capture maximal
systems of charts, needed to describe manifold structure. It may seem
somewhat remarkable that, for exainple, so abstract and extensive a work
as O'Neill’s Semi-Riemannian Geometry [1983] can be translated virtually
entirely without loss into a nominalistic framework, but that does seem to
be the case.

Topological spaces often arise from set-theoretic constructions out of
classes of functions, and one might expect that set theory is inevitably
encountered. Our two final examples serve as an antidote. Consider first the
construction of product spaces of a given family F of topological spaces. (We
follow Kelley {1955].) Suppose that F is countably infinite and that each of
the spaces, (X;, ;) (i € N) has a domain X; at the level of a set of reals.
The domain of the product space [](F) consists of the Cartesian product
[1{X:} of the X; together with the smallest topology for which inverses of
projections onto open sets in the coordinate spaces form a subbase. That
is, the domain consists of all functions f from N to the union of the X; such
that f(i) € Xy, i.e, [[{X:} = {f : f(i) € X;}. Since each f is (codable
as) a real, this Cartesian product is at the level of a set of reals, ie., at
RA?. The product topology on this domain is motivated by the requirement
that the projections P; onto the factor spaces be continuous, i.e., that for
U open in O;, P;}[U] be open. The sets of this form are stipulated to be a
subbase for the product topology, i.e., finite intersections of such sets form
a base. These are of the form V = {f : f(i) € U; for : € F}, F a finite
index set (e.g., a subset of N), U; an open set in O;. Such V are at the level
of sets of reals, and so the standard set-theoretic construction of the least
collection of these closed under arbitrary unions is available in RA%. Note
that for this construction, it is not really necessary to recognize the family
F as an object; it suffices if one is given the collection (or whole) of the
domains X; together with the assumption that for each of these there is a
collection (plurality) O; of open sets of X;; and this can be said in RA® on
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our assumption that the X; are at the level of sets of reals. Note further
that this construction in RA® depends on the countability of the family of
given spaces. If it is uncountable, functions in the Cartesian product will
be at the level of sets of reals, not reals, and the product topology itself will
be a collection at RA*. Obviously, fully general topology transcends RA%.
The same limitation does not arise, however, for products of, say, metric
spaces, for which the structure is capturable at the level of relations on the
points.

Finally, consider the notion of a sheaf, which arises as follows. One begins
with holomorphic (complex differentiable) functions f, g, ete. on neighbor-
hoods U, V, etc., of a point c in the complex plane. f and g are said to be
germ equivalent at c just in case f and g agree on some open neighborhood
W of c such that W C UNV. The equivalence class [f]. of functions under
this relation is called the germ of f at c. One then forms the class A, of
germs at c and then introduces A=%'|J ¢ A., called the sheaf of germs of
holomorphic functions on C. This becomes a topological space upon taking
as basic open neighborhoods of [f]. the class of all germs of f at points of
the domain U of f, that is {[f]. : ¢ € U}. (Neighboring germs come from
the same holomorphic function.) One then considers morphisms such as the
natural projection p of A onto C sending each germ [f]. to ¢, which is a local
homeomorphism. Alsc one has a continuous function F : A — C such that
F([f]e) = f(c) which can be used to represent all holomorphic functions
by means of cross-sections. (See Mac Lane [1986], pp. 352f.) Now it turns
out, that the holomorphic functions can be coded as reals and, moreover,
that germs can also be so represented via power series in z — ¢ convergent
in some open circle about ¢. Thus the sheaf A becomes identifiable as a
set of reals, i.e., at RAZ, as do the basic open neighborhoods. The topol-
ogy O for this space is itself then at the next level, at our familiar RA3.
Thus, even this somewhat elaborate and abstract set-theoretic construction
is within the reach of the ms framework. Finally, it should be noted, all
the diagrams of category theory involving these structures and the various
arrows between them can be described as well, as they represent relations
among finite tuples of structures (illustrating propositions which may, of
course, involve universally or existentially quantified variables ranging over
structures or morphisms).

It should be clear that it is not being claimed that set theory is ‘never
needed’, whatever that might mean specifically, or that mathematics ‘ought
to’ restrict itself to what can be nominalistically described. Rather the point
has been simply to illustrate the far-reaching scope of the PA3 and RA3
frameworks in the interests of class-free structuralism, to give some idea
of how rich a structuralism one may actually have without yet embracing
anything so strong as general model theory or general category theory. All
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these frameworks have their points and their places, and our task has been
to understand better just what these are.

There is a sort of corollary worth noting, however, regarding scientific in-
dispensability arguments. As Feferman has already emphasized, in connec-
tion with predicativist mathematics, it is remarkable how much of scientifi-
cally applicable mathematics can be captured within predicativist systems,
and this tends to undercut Quinean arguments for set theory based on in-
dispensability for scientific applications. (See, e.g., Feferman {1992].) This
holds a fortiori for nominalist systems as above, for these reach much fur-
ther than predicativist systems, as we have already indicated. While some
impredicative constructions do arise at the outer limits of applicable mathe-
matics, it would be a real challenge to find anything in the sciences requiring
mathematical power beyond the RA® framework. Thus, indispensability ar-
guments should be seen in a new light, not as justifying set theory per se,
but rather as helping (to some degree) to justify key mathematical existence
assumptions such as {modal nominalistic) axioms of infinity, including not
just (Ax oo}, or (Poss N), and (Poss R), but also the unrestricted compre-
hension scheme (CZ) and related principles, such as the full comprehension
principle of second-order logic. (Cf. Hellman [forthcoming].) Surprisingly
perhaps, if classes are ‘genuinely needed’, that is probably not because of
scientific applications but rather because of needs from within mathematics
proper, for instance, because they allow the greatest freedom and ease of
construction of anything yet devised. But whether and to what extent we
have or can have evidence for the truth or possibility of models of powerful
set theoretic axioms remains unresolved.
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AssTrACT. Recent technical developments in the logic of nominalism rake it
possible to improve and extend significantly the approach to mathermatics de-
veloped in Mathematics without Numbers. After reviewing the intuitive ideas
behind structuralism in general, the modal-structuralist approach as potentially
class-free is contrasted broadly with other leading approaches. The machinery
of nominalistic ordered pairing (Burgess-Hazen-Lewis) and plural quantification
(Boolos) can then be utilized to extend the core systems of modal-structural
arithmetic and analysis respectively to full, classical, polyadic third- and fourth-
order number theory. The mathenatics of many structures of central importance
in functional analysis, measure theory, and topology can be recovered within
essentially these frameworks.



